Boeing Realty Corporation's C-6 Facility • Los Angeles, California INSTALLATION OF TEMPORARY MONITORING WELLS AREA OF BUILDINGS 1 AND 2

VOLUME I

OCTOBER 1999

Prepared for:

BOEING REALTY CORPORATION 4060 Lakewood Boulevard, Sixth Floor Long Beach, CA 90808

Prepared by:

KENNEDY/JENKS CONSULTANTS 2151 Michelson Drive, Suite 100 Irvine, CA 92612-1311

K/J 984006.00

Boeing Realty Corporation's C-6 Facility • Los Angeles, California INSTALLATION OF TEMPORARY MONITORING WELLS AREA OF BUILDINGS 1 AND 2

APRIL 2000

Prepared for:

BOEING REALTY CORPORATION 4060 Lakewood Boulevard, Sixth Floor Long Beach, CA 90808

Prepared by:

KENNEDY/JENKS CONSULTANTS 2151 Michelson Drive, Suite 100 Irvine, CA 92612-1311

K/J 984006.00

Charles "Rus" Purcell, R.G. Manager of Geosciences

Jay Knight Senior Staff Geologist

Kennedy/Jenks Consultants
Engineers & Scientists

TABLE OF CONTENTS VOLUME I

SE	<u>Pag</u>	E
1	ITRODUCTION	1
2	IELD METHODS	2 4 4 5
3	YDROGEOLOGIC SETTING	8
4	1 Subsurface Geology 10 2 Groundwater 11 3 Chemical Constituents in Soil 11 4.3.1 Volatile Organic Compounds 11 4.3.2 Semi-Volatile Organic Compounds 11 4.3.3 Metals 11 4 Chemical Constituents in Groundwater 11 4.4.1 Volatile Organic Compounds in Groundwater 12 4.4.2 Metals in Groundwater 13	01112334
5	UMMARY1	7
6	ECOMMENDATIONS19	9
7	EFERENCES	n

TABLE OF CONTENTS (Continued)

VOLUME I

LIST OF TABLES

TABLE	TITLE
1	Monitoring Well Construction Details
2	Summary of Groundwater Elevation Data
3	Volatile Organic Compounds in Soils
4	Semi-Volatile Organic Compounds in Soils
5	Title 22 Metals in Soils
6	Comparison of Site Title 22 Metals Concentrations in Soil Samples with Common Soil Concentrations and State Threshold Limit Values
7	Compounds Detected in Groundwater Samples

LIST OF FIGURES

FIGURE TITLE

- 1 Location Map
- 2 Well Locations
- 3 Typical Well Construction
- 4 Groundwater Elevation Contour Map, 15 July 1998
- 5 Generalized Cross-Section Locations
- 6 Generalized Cross-Sections D-D'
- 7 Generalized Cross-Sections E-E'

LIST OF APPENDICES

A Regional Water Quality Control Board Correspondence B Boring Logs C Laboratory Reports from Soil Analyses (Located in Volume II) D Well Survey Report E Well Development Records F Groundwater Purge and Sample Forms G Laboratory Reports from Groundwater Analyses

1 INTRODUCTION

This report describes the drilling and sampling of nine temporary groundwater monitoring wells in the area of Buildings 1 and 2 at the Boeing Realty Corporation (BRC) C-6 facility ("Facility"), and presents preliminary results from the sampling and analyses of soil and groundwater. The work was done as described in the June 1, 1998 letter "Revision 2 to Technical Work Plan," sent to Mr. James E. Ross of the California Regional Water Quality Control Board, Los Angeles Region (RWQCB). The June 1, 1998 revision was submitted to address comments in the 20 May 1998 letter from Mr. Ross to Mr. Chris Stoker of Integrated Environmental Services, Inc. (RWQCB File No. 100.315. See Appendix A.)

The "Facility" is located at 19503 South Normandie Avenue in Los Angeles. The "Facility" occupies approximately 170 acres, bounded on the north by 190th Street, on the east by Normandie Avenue, on the south by Montrose Chemical and residential properties, and on the west by Western Avenue, Capitol Metals, and the former International Light Metals facility (Figure 1).

Buildings 1 and 2 are located in the eastern part of the "Facility," about a quarter mile south of 190th Street and a few hundred feet west of Normandie Avenue. The two buildings cover an area of about 33 acres, and comprise approximately 1,500,000 square feet.

The objective of the program described in the above correspondence was to obtain preliminary soils and groundwater information at locations within and adjacent to the two buildings. These locations had not been explored in the previous site characterizations of the "Facility."

2 FIELD METHODS

This section of the report describes the methods and procedures used in the drilling of the temporary groundwater monitoring wells, soil sampling conducted during the drilling process, well construction, well development, groundwater sampling, and analyses. The work was in accordance with the June 1, 1999 "Revision 2 to Technical Work Plan" (Appendix A).

2.1 Drilling and Soil Sampling

Temporary groundwater monitoring wells were drilled at nine locations, designated TMW-1 through TMW-9 (Figure 2). The actual drilling locations were in the immediate vicinity of the proposed locations in the Technical Work Plan and were selected in the field by a Kennedy/Jenks geologist. The selected drilling locations were checked for possible underground utilities by: 1) a records review, 2) Underground Service Alert (USA) clearance, and 3) geophysical screening. The concrete slabs at locations TMW-1 through TMW-6 and TMW-9 were cored for access before drilling. TMW-7 and TMW-8 are located on asphalt pavement that can easily be penetrated by the drill bit.

The drilling contractor was West HazMat Drilling Corporation of Anaheim (License C57-554979). A truck-mounted CME-75 rig was used for TMW-2, and the remaining wells were drilled by a CME-75 rig mounted on a specially-constructed, limited-access tracked vehicle. All the wells were drilled using 8-inch (nominal O.D.) hollow-stem augers.

The drilling of each well was supervised in the field by a Kennedy/Jenks geologist (either a California-registered geologist or an experienced geologist working under direction of a California-registered geologist). The geologists prepared boring logs in the field based on observation of the drilling operation, auger cuttings and examination of the recovered soil samples. Soils were classified in the field according to the Unified Soil Classification System (USCS) and were recorded on Kennedy/Jenks' standard soil boring logs. The finished boring logs are attached in Appendix B. Where soil descriptions changed between samples, the contact plotted on the finished logs is placed at the top depth of the lowest sample.

Wells TMW-1, TMW-2 and TMW-4 through TMW-9 were drilled on June 28, 1998 through July 2, 1998. Drilling at TMW-3 was attempted on July 2, 1999, but the boring could not be completed. A void was found about two feet below the existing concrete slab. The void continued to a depth of about six feet and was underlain by an additional layer of concrete. Due to this unexpected condition, drilling was stopped. Records were reviewed further by personnel from Integrated Environmental Services, Inc. (IESI) and Kennedy/Jenks in an attempt to determine the nature of possible underground structures at this location. Although the further reviews were not totally definitive, the data suggested moving the drilling location 10 to 15 feet south. An alternate location was selected and TMW-3 was drilled on July 21, 1998.

Drive samples were collected during the drilling using a 2-inch I.D. "modified California" split-barrel sampler containing three 6-inch-long brass insert tubes. The sampler was driven by a 140-pound down-hole slide hammer. Drive samples were taken at 1 foot below the base of the concrete or asphalt and then at nominal depths of 5, 10, 20, 30, 40, and 50 feet below the ground surface (bgs). In order to obtain a sample at the capillary fringe, continuous drive samples were taken from 64.5 feet bgs until wet soils were encountered.

The 6-inch tube best indicating conditions at the capillary fringe was selected for laboratory analysis by the geologist from field examination of these samples. Sample depths, blow counts, and sample recovery are recorded on the boring logs in Appendix B.

Total depth of each boring was based on the water level estimated from examination of the soil samples. Borings were continued to about 20 feet below the estimated water table. It was necessary to add water while drilling below the water table to control heaving sand conditions. The water added was clean water from the onsite service; volumes added were recorded on the field logs.

The recovered soil samples were divided into three parts. One portion was processed for laboratory analyses, the second was used for field testing, and the third was used by the geologist for soil classification.

Each sample designed for laboratory analysis was sealed with Teflon end sheets and tight-fitting plastic caps secured with Teflon tape, and was promptly placed in an iced cooler for transfer to the analytical laboratory. The laboratory sample was generally the bottom tube, but others were used where needed to provide an intact, undisturbed sample for testing. The intervals tested are indicated on the boring logs in Appendix B. The samples were transferred under chain-of-custody to Orange Coast Analytical, Inc. of Tustin, California, a state-certified laboratory, at the end of each day. These soil samples were analyzed by the following methods as specified for groundwater samples in the 1 June work plan:

- Volatile organic compounds (VOCs) by EPA Method 8260
- TPH by EPA Method 8015 for gasoline and diesel
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270
- Pesticides by EPA Method 8080
- Title 22 metals by EPA Methods 6010 and 7471
- Hexavalent chromium (if total chromium exceeded 0.1 mg/kg) by EPA Method 7196.

Laboratory reports from the soil analyses are in Appendix C.

A part of each sample was used for field headspace testing. This soil was placed in a ziplock-type polyethylene bag, sealed, and left for several minutes to allow possible organic vapors to be released from the soil and to accumulate in the bag. The headspace in the bag then was tested with a PID to provide a qualitative measure of the organic vapors in the soil sample. The PID was calibrated to 1 ppmv Hexane. Headspace readings are recorded on the boring logs. The PID also was used to periodically monitor the air in the workers' breathing space during drilling.

Soil cuttings were stockpiled at a designated location on the "Facility." The soil stockpiles were placed on a layer of plastic sheeting and covered with plastic sheeting. Soil from each boring was stockpiled separately. Following receipt of laboratory results, clean soil stockpiles were used for backfill onsite and hazardous soils were manifested by BRC and disposed of at an appropriate offsite facility.

Augers, samplers, and other equipment contacting the in-place soils were decontaminated before each use. The augers were decontaminated by steam cleaning. Samplers were decontaminated by washing in a solution of Alconox (or an equivalent) in clean water, and

then rinsing twice in clean water. The water from decontamination was contained in Department of Transportation (DOT) 17H/17E drums that were marked accordingly, stored at a designated location on the "Facility," and appropriately manifested by BRC and disposed offsite based on laboratory results.

2.2 Well Installation

A temporary groundwater monitoring well was constructed in each borehole promptly after drilling was completed. The wells were constructed of 2-inch Schedule 40 PVC casing and screen; typical construction is shown in Figure 3 and well dimensions are summarized in Table 1.

Wells were installed through the hollow stem augers. Each well was constructed with 20 feet of 0.010-slot screen. The screen and casing were suspended in the borehole so that 15 feet of screen was below the estimated water table. A sand pack of Lone Star No. 2/12 sand then was placed around the screen as the augers were retracted. Sand was placed to about 2 feet above top of the screen. The well then was surged until the sand pack showed no further settlement. Sand was added as needed to keep the top of the filter pack about 2 feet above the screen.

A minimum 2-foot layer of medium bentonite chips was placed as a sanitary seal above the sand pack. The bentonite was hydrated in place with clean water; the volumes of water used were recorded on the field logs.

A second bentonite seal was used at the ground surface. A sandbag was placed around the well casing as a base and the annulus was filled with bentonite chips to 1 to 2 feet below the surface.

The well casings were cut off about 1 foot above the ground surface and fitted with locking caps. Drums and caution tape were used for temporary surface protection.

The temporary monitoring wells were surveyed for vertical and horizontal control by a California licensed surveyor. Vertical control was established for the reference mark at the top of the well casing and for the adjacent ground surface. Elevations were surveyed to an accuracy of 0.01 foot relative to mean sea level, as done with the existing well network. The survey report is attached in Appendix D.

2.3 Well Development

The temporary groundwater monitoring wells were developed no sooner than 48 hours after installation. Wells TMW-1. TMW-2, and TMW-4 through TMW-9 were developed on 6 through 8 July. Well TMW-3 was developed on 24 July. The well development records are attached in Appendix E.

The wells were developed by West HazMat Drilling Corporation under the direction of a Kennedy/Jenks geologist. Water levels and total well depth were sounded before beginning development. The wells then were bailed using a cable winch on a limited-access drilling rig. Because of the large volume of water bailed from the wells, additional surging was not needed. Most of the wells were bailed using a 7-foot stainless steel bailer. A PVC bailer was used to develop well TMW-9 because of a slight bend in the flexible 2-inch PVC casing that prevented the rigid 7-foot stainless steel bailer from reaching the total depth.

The bailers and the part of the hoist cable that could contact the well water were decontaminated by steam cleaning before use in each well. The water from decontamination and the water bailed from the wells was contained in DOT 17H/17E drums that were marked accordingly, stored at a designated location on the "Facility," and appropriately manifested by BRC and disposed offsite based on laboratory results.

As specified in the work plan, the volume of water removed from the wells during development was at least the sum of: 1) three wetted casing volumes, and 2) three times the volume of water added during drilling and well construction. Because of the need to add water during drilling, the resulting volumes were rather large for 2-inch wells--80 to 110 gallons, or more than 25 wetted casing volumes. Well development also was continued until measurements of field parameters were seen to stabilize, as specified in the 1 June 1998 work plan:

- Temperature within 0.5 degree Celsius
- Specific conductance within 10 percent
- pH within 0.5 pH units.

Because the wells were developed by bailing, turbidity did not decrease below the 50 NTU level specified in the work plan. The surging action of the bailer causes turbulence in the water column and stresses the sand pack, thereby keeping fines in suspension. Considering the large volume of water bailed from each well, it was anticipated that turbidity would be less than 50 NTU when the wells were later purged and sampled by submersible pump. This proved true for all wells except TMW-1, where turbidity remained slightly above 50 NTU, as explained in the next section.

The full water volume specified for well development was not bailed from TMW-9. The casing in this well was bent such that bailing was particularly slow. The well was bailed for about three hours, removing 53 of the specified 84 gallons, and temperature, specific conductance, and pH were seen to stabilize. Bailing then was stopped and the remainder of the specified development volume was added to the volume purged before sampling.

2.4 Groundwater Sampling and Analysis

Groundwater samples were collected from the temporary monitoring wells no sooner than seven days after well development. Wells TMW-1. TMW-2 and TMW-4 through TMW-9 were sampled on July 14 and 15, and TMW-3 was sampled on 31 July. Field data were recorded on the standard groundwater monitoring forms (Appendix F).

Before purging and sampling each well, depths to water were measured to within 0.01 foot using an electronic water level meter. An additional round of water level measurements was made on the afternoon of 15 July, including the temporary groundwater monitoring wells sampled previously and the pre-existing (permanent) monitoring wells that were accessible for measurement. These water levels are summarized in Table 2 and were used to prepare the contour map in Figure 4.

The wells were purged and sampled using a Grundfos RediFlo2 pump and single-use polyethylene tubing. The pump, motor lead, safety cable, and tubing were decontaminated before use in each well. The exterior of the pump and the other equipment contacting the well water were washed with a solution of Liquinox in clean water, rinsed with clean water,

and then rinsed with distilled water. The pump, with tubing attached, then was placed in a solution of Liquinox in clean water and was run for several minutes to clean the interior of the pump and tubing. The pump then was rinsed by circulating clean water for several minutes. For a second rinse, at least 2.5 gallons of distilled water were pumped through the pump and tubing.

The pump was set at a nominal depth of 75 feet for purging and sampling in each well. The wells were purged of at least three wetted casing volumes by pumping at a slow rate, typically not exceeding 0.5 gallons per minute. Samples of the purged water were tested periodically for the field parameters of temperature, specific conductance, pH, and turbidity. Purging was continued until at least two consecutive measurements of these field parameters were within the ranges specified in the 1 June work plan:

- Temperature within 0.5 degree Celsius
- Specific conductance within $\pm 10~\mu$ mhos/cm if less than 800 or ± 50 if more than 800
- pH within 0.1 pH units
- Turbidity less than 50 NTU.

The field parameters were within these ranges for seven of the nine wells. The two remaining wells were sampled after purging five wetted casing volumes, per the work plan. TMW-1 was sampled after purging about six well volumes and after temperature, specific conductance, and pH had stabilized within the above ranges. However, turbidity was slightly above the specification, being measured at 80 and 67 NTU, before and after sampling, respectively. TMW-5 was sampled after purging five well volumes when temperature and specific conductance continued to fluctuate beyond the ranges specified above. However, the field parameters measured before and after sampling were within the specified ranges.

After the purging was completed, the pumping rate was slowed to a rate suitable for filling sample containers, and samples were collected for the parameters specified in the work plan:

- VOCs by EPA Method 8260
- TPH by EPA Method 8015 for gasoline and diesel
- SVOCs by EPA Method 8270
- Pesticides by EPA Method 8080
- Title 22 metals by EPA Methods 6010 and 7471
- Hexavalent chromium (if total chromium exceeded 0.1 mg/L) by EPA Method 7196.

The samples were collected in order of decreasing volatility, per the EPA Technical Enforcement Guidance Document (EPA, 1986) and as listed above. The samples for metals analyses were filtered in the field using Gelman 0.45 µm in-line filter capsules.

One additional measurement of field parameters was made after the samples were collected. After all sampling and field measurements were completed, the pump was removed from the well and the polyethylene tubing and filter capsules were discarded. Water from the decontamination and well purging was contained in DOT 17H/17E drums

that were marked accordingly, stored at a designated location at the "Facility," and appropriately manifested by BRC and disposed offsite based on laboratory results.

The groundwater samples were placed promptly in an iced cooler. The samples were transferred under chain-of-custody to Orange Coast Analytical, a state-certified laboratory, at the end of each day. Laboratory reports from the groundwater analyses are in Appendix G.

2.5 Quality Assurance

Blank and duplicate samples were used for field quality assurance. One travel blank was used with each set of samples. The travel blank is a vial of contaminant-free water that was prepared by the laboratory and transported with the samples. The travel blank was analyzed by EPA Method 8260 as a check on possible contamination of the samples by contact with volatile organic compounds during transport, storage, or handling. No compounds were detected in these samples.

Equipment rinsate blanks were used as a check on decontamination of the sampling equipment. During the drilling and soil sampling, rinsate blanks were prepared by pouring distilled water over and through a sample barrel, with insert tubes, after it had been decontaminated for use. The water was collected directly in a 40-ml VOA vial and tested for VOCs by EPA Method 8260. These blanks were taken daily at random times selected by the field geologist. No compounds were detected in these rinsate blanks.

Equipment blanks also were prepared during the groundwater sampling. These blanks were prepared by placing the sampling pump, after decontamination, in a new container of distilled water and pumping the distilled water through the polyethylene tubing into a set of sample containers. The groundwater equipment blanks were analyzed for all the parameters specified for the groundwater samples. The sample containers were filled in the same order and manner as the groundwater samples, except that the distilled water was not filtered. No compounds were detected in the blank water samples.

One duplicate groundwater sample was collected during the sampling of TMW-8 on July 15. The duplicate sample was analyzed for all the specified groundwater parameters as a check on sampling and analytical precision. This additional set of sample bottles was filled along with the primary sample, following the same procedures and order. The duplicate was assigned a false sample number and time, and was submitted blind to the laboratory. Results from the duplicate samples were in close agreement with the corresponding groundwater sample.

3 HYDROGEOLOGIC SETTING

This section provides a brief summary of regional and local geology and hydrogeology.

3.1 Regional Hydrogeology

The geology and hydrogeology of the region surrounding the "Facility" were determined mainly from reference to reports published by the U.S. Geological Survey (USGS) (Poland and others, 1959) and the California Department of Water Resources (DWR), (1961). Reference also was made to previous reports prepared by Kennedy/Jenks for the "Facility."

The "Facility" is located on a broad plain at an elevation of approximately 50 feet MSL. The DWR and USGS define this area as the Torrance Plain, a Pleistocene-age marine surface and a subdivision of the Coastal Plain of Los Angeles and Orange Counties. The ground surface in this area is generally flat with an eastward gradient of about 20 feet per mile (less than one-half percent). Surface drainage is generally toward the Dominguez Channel, about a mile to the east. The Dominguez Channel, in turn, flows southeastward toward the Los Angeles and Long Beach Harbors in San Pedro Bay.

The surface sediments in this area are assigned to the Lakewood Formation (DWR, 1961), a unit defined to include essentially all of the upper Pleistocene sediments in the Los Angeles Coastal Plain area. The Lakewood Formation includes deposits of both marine and continental origin, representing stream transport and sedimentation along the Pleistocene marine plain. In the "Facility" area, the Lakewood Formation may include the Semiperched Aquifer, the Bellflower Aquiclude, and the Gage Aquifer. The Semiperched Aquifer includes deposits described as Terrace Cover (Poland et. al., 1959). Extent and thickness of this unit is not rigorously defined, but appears to include the near-surface water-bearing units in the area of the "Facility." The Bellflower Aquiclude is described as a heterogeneous mixture of continental, marine, and wind-blown sediments, mainly consisting of clays with sandy and gravely lenses (DWR, 1961). The base of the Bellflower Aquiclude is about 100 feet below sea level (about 150 feet bgs) in the "Facility" area. The Gage Aquifer is a water-bearing zone of fine to medium sand and gravel confined by the Bellflower Aquiclude. It is reported to be about 40 feet thick in the "Facility" area and is described as being of secondary importance as a water source (DWR, 1961).

The Lakewood Formation is underlain by the Lower Pleistocene San Pedro Formation, which continues to about 1,000 feet in depth in the "Facility" area. Major water-bearing zones within the San Pedro Formation are the Lynwood Aquifer and the Silverado Aquifer. These are reported to be at depths of about 300 and 500 feet, respectively, in the "Facility" area (DWR, 1961). The Silverado is an important groundwater source in the Coastal Plain and is considered a source of drinking water (DWR, 1961).

3.2 Groundwater at the "Facility"

The uppermost groundwater at the "Facility" appears to be under water-table conditions at depths of 60 to 70 feet. Regionally, this uppermost groundwater is probably considered part of the Semiperched Aquifer discussed previously and is separated from the deeper zones by the Bellflower Aquiclude (Kennedy/Jenks, 1997b).

Monitoring wells at the "Facility" are completed in two zones. Most of the wells are completed at or near the semi-perched aquifer, with screened intervals ranging from 60 to

90 feet bgs. Two deeper wells, WCC-1D and WCC-3D, are completed in a deeper zone with screened intervals from 120 to 140 feet bgs (Woodward-Clyde Consultants, 1990).

Records of water-level measurements are included in the quarterly Groundwater Monitoring Summary Reports (Kennedy/Jenks, January 1997b). The hydraulic gradient in the uppermost groundwater is generally toward the south-southeast, toward a local low in the area of wells WCC-7S and WCC-12S. The December 1996 groundwater gradient was 6.6 x 10⁻⁶ ft/ft (3.5 ft/mile) (Kennedy/Jenks, 1997b).

Groundwater conditions at the "Facility" are known from previous investigations and from the quarterly groundwater monitoring program (Kennedy/Jenks, 1997b). Groundwater samples from observation wells at the "Facility" have been sampled and analyzed on a quarterly basis since 1992.

4 RESULTS

This section summarizes information obtained from drilling and sampling the temporary monitoring wells. Results of this program are discussed in four categories: 1) subsurface geology, 2) groundwater, 3) chemical constituents in soil, and 4) chemical constituents in groundwater.

4.1 Subsurface Geology

The drilling program for the nine temporary groundwater monitoring wells provided soils data on roughly 10-foot intervals to the water surface (around 64 to 66 feet bgs) and general descriptions to total depth of around 86 feet. These soils data were combined with previous core boring data to 50 feet bgs conducted for a previous investigation (Kennedy/Jenks, 1997a) to produce generalized cross-sections D-D' and E-E' (Figures 5, 6 and 7). In general, the new soils data was correlative with the previous soils data and the soils units Q1 through Q4. A new unit, Q5, located below 65 feet bgs, has been described and added to the soils classification.

- Unit Q1: Unit Q1 is a layer of silty clay and sandy clay encountered at the surface or just below the pavement or engineered fill soils over the entire "Facility." This clay is typically dark brown to dark reddish brown in color and medium stiff to hard. It has moderate to high plasticity and is classified as CL or CH under the Unified Soil Classification System (USCS). Unit Q1 has a uniform thickness of about 5 feet along the west side of the "Facility." It thickens to about 22 feet on the northeast corner of the "Facility," but only to about 10 feet in the east-central portion of the "Facility."
- Unit Q2: Unit Q2 comprises a sequence of interbedded clayey silt, fine sandy silt, and fine silty sand with minor lenses of silty clay. The predominant USCS classifications are ML, SM and SC and combinations of the three classifications. The Unit Q2 soils are brown and olive brown in color and are generally medium dense. Unit Q2 is about 17 to 20 feet thick and the base is about 22 to 25 feet bgs along the west side of the "Facility." The unit thickens to about 30 to 40 feet at the east side of the "Facility." The base of Unit Q2 also slopes eastward, and occurs at depths of 45 to 50 feet along the northeast side of the "Facility" and greater than 50 feet at the east-central portion of the "Facility."
- Unit Q3: Unit Q3 is an interval of fine and very fine sand with only minor silt. Soils in this interval generally are classified as SP and SP-SM under the USCS. This soil unit includes distinctive beds containing abundant shell fragments on the southwest. The sand is mainly light yellowish brown to light yellowish gray in color. It has generally massive structure, and commonly is described as being similar to beach sand. The sand is generally dense, but has essentially no cohesion.
 - Unit Q3 is more than 25 feet thick on the west side of the "Facility," extending from about 20 feet bgs to below the 50-foot depth drilled at the northwest corner of the "Facility." However, in the southern part of the "Facility," Unit Q3 is interlayered with Unit Q4, a wedge of fine silty sand and fine sandy silt.
- **Unit Q4**: Unit Q4 was observed in borings in the southwestern and south-central part of the "Facility." It pinches out in the north-central part of the area and is likely below the depth drilled on the east. Maximum thickness of this soil unit is about 17 feet, on the

southwest. Unit Q4 mainly contains fine silty sand (SM) and clayey silt (ML) with thin interbeds of silty clay and fine sand. These soils are generally yellowish brown in color and are medium dense to dense.

 Unit Q5: Unit Q5 is a layer of predominantly silty sand and sandy silt encountered below about 65 feet bgs. The predominant USCS classification if SM. Unit Q5 soils are typically olive brown in color and generally dense. The unit extends to the base of the drilled interval; therefore no thickness measurements are possible. The top of Unit Q5 appears fairly consistent in a north-south direction, but tends to get deeper going from west to east.

4.2 Groundwater

Groundwater was encountered under water-table conditions at depths of 64 to 65 feet bgs in the temporary monitoring wells. The water levels measured in the temporary monitoring wells were consistent with measurements in the pre-existing (permanent) wells, as listed in Table 2. Figure 4 is a water-level contour map combining measurements in the temporary groundwater monitoring wells with data from the permanent wells. The contours in Figure 4 indicate a quite flat hydraulic gradient toward the southeast at 0.001 ft/ft (5 feet per mile). This gradient is similar to that determined from previous water-level measurements in the permanent monitoring wells alone (e.g., Kennedy/Jenks, 1997b).

4.3 Chemical Constituents in Soil

The soil samples were analyzed for the following parameters:

- VOCs by EPA Method 8260
- TPH by EPA Method 8015 for gasoline and diesel
- SVOCs by EPA Method 8270
- Pesticides by EPA Method 8080
- Title 22 metals by EPA Methods 6010 and 7471
- Hexavalent chromium (if total chromium exceeded 0.1 mg/kg) by EPA Method 7196.

The laboratory reports for soils are attached in Appendix B. Pesticides and volatile petroleum hydrocarbons (TPH-gasoline) were not detected in any of the samples. Extractable petroleum hydrocarbons (TPH-diesel) were detected in only two samples at 5 feet bgs in TMW-2 and 65 feet bgs in TMW-8, at 27 mg/kg and 13 mg/kg, respectively. The remaining analyses are discussed in the following subsections.

4.3.1 Volatile Organic Compounds

VOCs detected in the soil samples are summarized in Table 3. Trichloroethene (TCE) was reported most commonly; it was detected in 60 of the 72 soil samples, including samples from each of the nine borings. In 18 of these samples, TCE was accompanied by related compounds, mainly 1,1-dichloroethene (1,1-DCE) but also including *cis*-1,2-dichloroethene (*cis*-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethane (1,2-DCA), and 1,1,1-trichloroethane (1,1,1-TCA). Concentrations typically were low in samples from the unsaturated-zone soils but increased in samples at the capillary fringe. Chloroform and naphthalene also were detected in a few isolated samples; chloroform was detected at 30

feet (4.1 μ g/L) and 50 feet (5.7 μ g/L) bgs in TMW-2 and naphthalene was detected at 2.9 μ g/L at 30 feet bgs in TMW-5 and at 4.2 μ g/L at 65 feet bgs in TMW-7. Chloroform is not known to have been used at the site and is also a common laboratory chemical.

The highest VOC concentrations were in the samples from TMW-2, in the northeast part of Building 1. This is near former Building 36, an area where previous exploration also found elevated VOCs in the unsaturated-zone soils (Kennedy/Jenks, 1997a). The unsaturated-zone soil samples from TMW-2 were reported to contain TCE at up to 300 μ g/kg and 1,1-DCE at up to 140 μ g/kg, along with lower levels of 1,1-DCA, *cis*-1,2-DCE, trans-1,2-DCE, and 1,1,1-TCA. VOC levels at TMW-2 were increased in the capillary-fringe sample, with TCE reported at 1,000 μ g/kG, 1,1-DCE at 340 μ g/kg, and 1,1-DCA, 1,1,1-TCA, and *cis*-1,2-DCE at 39 to 57 μ g/kg.

The VOC levels reported at TMW-2 did not continue to the nearby borings. Samples from the unsaturated zone in TMW-1, about 270 feet to the west, were reported to contain only relatively minor TCE (11 to 55 μ g/kg) and 1,1-DCE (3.9 to 9.2 μ g/kg). The capillary-fringe sample from TMW-1 showed TCE in the same range as the unsaturated-zone samples (17 μ g/kg) and only a slight increase in 1,1-DCE (23 μ g/kg). Similarly, the unsaturated-zone samples from TMW-9 (about 450 feet to the south-southwest in Building 1) were reported to contain only TCE at 7.6 to 73 μ g/kg. TCE increased to 340 μ g/kg in the capillary-fringe sample from TMW-9. Soil analyses from TMW-8 (just west of Building 1, about 450 feet south-southeast of TMW-2) were similar to those from TMW-9. Samples from the unsaturated zone were reported to contain low concentrations of TCE and 1,1-DCE (2.8 to 14 μ g/kg) but these compounds increased to 210 and 23 μ g/kg, respectively, at the capillary fringe.

Analyses of soil samples from TMW-7, outside the southeast corner of Building 1, and TMW-4, in the northeast part of Building 2, were similar to those from TMW-8 and TMW-9. The samples from 5 to 50 feet depth in TMW-7 were reported to contain TCE at 3 to 100 μ g/kg; TCE increased to 380 μ g/kg in the capillary fringe sample and was accompanied by trace levels of 1,1-DCE and naphthalene. TCE was reported in the 10- to 50-foot samples from TMW-4 at up to 51 μ g/kg; the capillary fringe samples contained 240 μ g/kg TCE along with low levels of 1,1-DCE and chloroform.

VOC concentrations were slightly higher in samples from the western part of Building 2. Samples from the unsaturated zone in TMW-3 generally were reported to contain TCE at 24 to 92 μ g/kg. However, the sample from 20 feet bgs showed TCE increased to 250 μ g/kg, along with trace levels of 1,1-DCA, 1,1-DCE, 1,1,1-TCA, and *cis*-1,2-DCE. TCE increased further to 1,100 μ g/kg in the capillary-fringe sample. At TMW-5, most unsaturated-zone samples were reported to contain TCE at up to 91 μ g/kg. along with traces on *cis*-1,2-DCE. The samples from 20 and 50 feet bgs showed increased TCE levels of 190 and 320 μ g/kg, respectively. TCE in the capillary fringe sample from TMW-5 was 910 μ g/kg.

4.3.2 <u>Semi-Volatile Organic Compounds</u>

SVOCs were detected only in the near-surface soil samples from TMW-1 and TMW-2 (Table 4), in the northern part of Building 1. Several coal-tar derivatives typically associated with asphalt were detected at up 4,000 μ g/kg in the samples from 3 and 5 feet bgs in TMW-1. Some of the same compounds also were detected in the 1-foot sample from TMW-2 at

lower concentrations of up to 400 µg/kg. These compounds were not detected in the deeper samples from these borings, or at the other borings.

4.3.3 Metals

Metals detected in the soil samples are summarized in Table 5. Results of these analyses were compared with the typical concentrations of metals in the local soils, determined from the previous extensive site exploration (Table 6).

Metals detected in these soil samples were generally similar to those detected previously. Barium, chromium (total), cobalt, copper, nickel, vanadium, and zinc were detected in nearly all the samples from the temporary monitoring wells, and were detected in all the samples from the previous exploration. The concentrations of these metals detected in the recent samples also were in about the same range as those reported from the previous exploration (Table 6).

Arsenic, beryllium, and lead were detected in most of the samples from the temporary monitoring wells, but generally were not detected in the previous exploration. Arsenic was reported at generally low levels, mainly less than 10 mg/kg and not exceeding 20 mg/kg. These concentrations are within the typical natural range for soils (Table 6) and are substantially below the TTLC of 500 mg/kg. The arsenic concentrations also were generally uniform laterally and vertically in this area, indicating that the arsenic is most likely a natural constituent in these soils.

Beryllium was reported at very low concentrations, up to a maximum of 1.3 mg/kg. These concentrations are at the low end of the common range in soils (Table 6) and a small fraction of the TTLC. The beryllium concentrations also were generally uniform vertically and laterally, and appear to be a natural occurrence.

Lead was detected in all the soil samples at generally low concentrations, mainly less than 10 mg/kg. Three samples were reported to contain lead at 11 to 16 mg/kg and a maximum concentration of 38 mg/kg was reported in the samples from 20 feet bgs in TMW-6. These lead concentrations are at the low end of the common range in soils (Table 6) and do not approach the TTLC. The generally uniform concentrations of lead in these samples indicate that it is most likely a natural constituent in the soil.

Cadmium, selenium, and molybdenum were reported at low levels in a few samples, mainly from TMW-5. Cadmium was detected at up to 1 mg/kg in 10 samples from TMW-5, TMW-2, and TMW-6. Molybdenum was reported at up to 4 mg/kg in four samples from TMW-5 and TMW-6. The cadmium and molybdenum levels are within to slightly above the common range in soils (Table 6). Selenium was detected in seven samples from TMW-5 at up to 5.1 mg/kg. The reported selenium levels are slightly above the common range in soils (Table 6). All three of these metals were reported at levels much lower than the TTLC or 10 times the STLC.

4.4 Chemical Constituents in Groundwater

Groundwater samples from the temporary monitoring wells were analyzed for the parameters that were specified in the work plan:

VOCs by EPA Method 8260

- TPH by EPA Method 8015 for gasoline and diesel
- SVOCs by EPA Method 8270
- Pesticides by EPA Method 8080
- Title 22 metals by EPA Methods 6010 and 7471
- Hexavalent chromium (if total chromium exceeded 0.1 mg/L) by EPA Method 7196

The groundwater laboratory reports are attached in Appendix F and the compounds detected are summarized in Table 7. Pesticides and extractable fuel hydrocarbons (TPH diesel) were not detected in any of the samples. Semi-volatile organic compounds generally were not detected; only bis (2ethylhexyl) phthalate (a common plasticizer found in laboratory equipment) was reported in the samples from TMW-8 and TMW-9 at 5.8 and 61 µg/L, respectively. Volatile fuel hydrocarbons (TPH gasoline) were reported at 0.2 to 3.5 ppm in all wells, and generally were higher in the samples having higher levels of VOCs. Results of the VOC and metals analyses are discussed in the following subsections.

4.4.1 Volatile Organic Compounds in Groundwater

VOCs were detected in the groundwater samples from all the temporary monitoring wells. TCE and 1,1-DCE occurred at the highest concentrations, and were detected in all the wells. TCE and 1,1-DCE also are accompanied by related compounds including *cis*-1,2-DCE, trans-1,2-DCE, 1,2-DCA, 1,1,1-TCA, and 1,1,2-TCA. These compounds were detected in differing combinations and proportions, indicating the possibility of originating from more than one source.

Based on the preliminary round of data collected for this study, and on common industrial usage and the distribution and concentration of the VOCs at the "Facility," the TCE, 1,1,1-TCA, and 1,1,2-TCA are likely present as the "parent" compounds. 1,1-DCE *cis*-1,2-DCE, trans-1,2-DCE, 1,1-DCA, and 1,2-DCA are likely present as transformation products.

1,1-DCE and 1,1-DCA are common transformation products of 1,1,1-TCA. 1,1-DCE is produced from 1,1,1-TCA as a result of a type of chemical reaction, termed an elimination reaction. 1,1-DCA is produced from 1,1,1-TCA as a result of an anaerobic biological reaction termed reductive dechlorination. 1,1-DCE and 1,1-DCA may also result from similar transformations of 1,1,2-TCA. 1,2-DCA is produced from 1,1,2-TCA as a result of biologically mediated reductive dechlorination.

Cis-1,2-DCE and trans-1,2-DCE are common transformation products of TCE. Both are formed as a result of biologically mediated reductive dechlorination. 1,1-DCE theoretically can also be produced from TCE via biologically mediated reductive dechlorination. However, cis-1,2-DCE and trans-1,2-DCE are more commonly produced from TCE than 1,1-DCE.

At sites with both 1,1,1-TCA and TCE, the presence of 1,1-DCE is more commonly a result of transformation of the 1,1,1-TCA than transformation of the TCE. The rate of chemical transformation of 1,1,1-TCA in the subsurface is generally greater than the rate of biological transformation of TCE in the subsurface. The chemical reactions of these chlorinated VOCs are generally less sensitive to site conditions than biologically mediated reactions. The chemical elimination reaction that produces 1,1-DCE may therefore proceed at a

sufficient rate when biologically mediated reductive dechlorination is inhibited due to suboptimum conditions.

The highest VOC concentrations were detected in water from TMW-2; as noted previously, this well is in an area where high levels of VOCs had been reported from previous exploration. Water from TMW-2 was reported to contain TCE and 1,1-DCE at 34,000 and 36,000 μg/L, respectively. The TMW-2 water also contained 1,1,1-TCA (6,900 μg/L) and lower levels of chloroform, *cis*-1,2-DCE, and trans-1,2-DCE.

Analyses of groundwater from the temporary monitoring wells located southeast of TMW-2 detected the same group of compounds, although at much lower concentrations. The samples from TMW-8 and TMW-7 were reported to contain TCE and 1,1-DCE at 3,000 to 7,000 μ g/L, along with 1,1,1-TCA, *cis*-1,2-DCE, and trans-1,2-DCE. These samples also contained benzene (40 to 62 μ g/L), 1,1-DCA (73 to 99 μ g/L), and 1,1,2-TCA (29 to 37 μ g/L), which were not reported at TMW-2.

A similar set of compounds was detected further to the south at TMW-4. The sample from TMW-4 was reported to contain TCE and 1,1-DCE (at 2,300 and 1,500 μ g/L), along with *cis*-1,2-DCE, trans-1,2-DCE, 1,1-DCA, and 1,1,2-TCA. The samples from TMW-2, TMW-8, TMW-7, and TMW-4 characteristically contain 1,1-DCE at levels similar to or higher than TCE, along with the same related compounds.

VOC levels in nearby wells TMW-1 and TMW-9 were markedly lower than in TMW-2. TCE and 1,1-DCE in water from TMW-1 were only 540 and 900 μ g/L, respectively. However, the water seems similar in character to that from TMW-2 in that 1,1-DCE was higher than TCE and that chloroform and 1,1,1-TCA also were detected. The sample from TMW-9 showed TCE at 290 μ g/L with only 24 μ g/L of 1,1-DCE and traces of chloroform and tetrachloroethene (PCE).

The samples from wells TMW-3, TMW-5, and TMW-6, in the west and south parts of Building 2, contained VOCs in different combinations than seen at TMW-2 and the nearby wells. Water from TMW-3 and TMW-5 contained elevated TCE (8,100 and 3,700 μ g/L) with much lower levels of 1,1-DCE (200 and 460 μ g/L). No other VOCs were detected in these samples. TCE was much lower (490 μ g/L) in the sample from TMW-6, as was 1,1-DCE (26 μ g/L). Chloroform, however, was the highest reported in these wells, at 550 μ g/L.

4.4.2 Metals in Groundwater

Barium, chromium, and zinc were detected in the groundwater samples (Table 7). The remaining Title 22 metals were not detected.

Barium was reported at 0.020 to 0.23 mg/L. These values are well below the drinking water standard of 1 mg/L. The highest barium levels were reported from TMW-1 and TMW-2, at 0.2 and 0.23 mg/L. Reasons for these higher concentrations are not known. It is notable that barium levels were not unusually high in the capillary-fringe soil samples from these locations.

Chromium (total) was reported in the samples from TMW-3, TMW-4, TMW-5, TMW-6, and TMW-9 at similar concentrations of 0.011 to 0.018 mg/L. These values are below the drinking water standard of 0.05 mg/L. Chromium (total) was not detected in water from TMW-1, TMW-7, and TMW-8. The water from TMW-2 was reported to contain chromium

(total) at 0.13 mg/L, and the EPA 7196 analysis reported hexavalent chromium at the same level. Hexavalent chromium was not detected in the soil sample from the capillary fringe in TMW-2, and total chromium levels were not unusually high.

Zinc was detected in the samples from TMW-1, TMW-2, TMW-3, TMW-4, TMW-6, TMW-7, and TMW-8 at 0.013 to 0.093 mg/L. These values are a small fraction of the 5 mg/L drinking water standard. Zinc was not detected in TMW-5 and TMW-9.

5 SUMMARY

Nine temporary groundwater monitoring wells were installed, developed and sampled in the area of buildings 1 and 2 on the "Facility." Soil samples were collected at intervals from one foot below the base of the surface covering to the capillary fringe at around 65 feet bgs during well installation. One round of groundwater samples were collected and analyzed during this investigation.

Overall, the soils and groundwater data are in good agreement with chemicals of concern and their distribution in the subsurface identified in previous characterization studies performed on the "Facility" but outside of the area of Buildings 1 and 2. The south-southeast groundwater flow direction and low gradient are also consistent with the results of previous characterizations.

- TPH-gasoline and pesticides were not detected in any of the soil samples.
- VOCs were detected throughout the soils analyzed, with TCE and 1,1-DCE being the most common. The highest concentrations of VOCs were detected at TMW-2, located in the northeast corner of Building 1 near the former Building 36, an area where previous exploration also found elevated VOCs in the unsaturated soils (Kennedy/Jenks, 1997a). The highest concentration of TCE was 300 μg/kg in TMW-2 at 30 feet bgs and of 1,1-DCE was 140 μg/kg in TMW-2 at 30 feet bgs. VOC levels increased in the capillary fringe soil samples from TMW-2 with TCE reported at 1,000 μg/kg and 1,1-DCE reported at 340 μg/kg. The capillary fringe soil samples typically had the highest concentrations of VOCs. Lower concentrations of 1,1-DCA, *cis*-1,2-DCE, trans-1,2-DCE and 1,1,1-TCA were also associated with the TCE and 1,1-DCE at TMW-2. VOC distribution at TMW-4, TMW-7, TMW-8, and TMW-9 were similar to TMW-2 but at lesser concentrations.
- VOC concentrations in soils were slightly higher along the west side of Building 2 at TMW-3 and TMW-5 than at TMW-1, TMW-4, TMW-7, TMW-8, and TMW-9. TCE concentration was highest along the west side of Building 2 at TMW-3 with a concentration of 250 μg/kg at 20 feet bgs and increased to 1,000 μg/kg in the capillary fringe. In TMW-5 the highest concentration of TCE was 320 μg/kg at 50 feet bgs and increased to 910 μg/kg in the capillary fringe.
- SVOCs were detected in soils only in TMW-1 and TMW-2 located in the northern part of Building 1. Coal tar derivatives were detected up to 4,000 μg/kg from 3 and 5 feet bgs at TMW-1 and up to 400 μg/kg from the 1-foot bgs sample from TMW-2.
- Metals detected in the soils were generally similar to the metals detected from previous
 extensive site investigations. Barium, chromium (total), cobalt, copper, nickel,
 vanadium, and zinc were detected in nearly all the soil samples, and at concentrations in
 about the same range as previously reported.
- In addition, arsenic, beryllium, and lead were detected in most of the soil samples from the temporary monitoring wells, but were not typically detected in previous investigations. All were detected at low concentrations within the natural range for soils and are well below the appropriate TTLC levels, and are generally uniform vertically and laterally, suggesting a natural occurrence.

- Cadmium, selenium, and molybdenum were reported at low levels in a few soil samples, mainly from TMW-5. All are slightly above the common range in soils but are at levels much lower than the TTLC or 10 times the STLC.
- The depth to first groundwater, the groundwater flow direction and the groundwater gradient are in accord with the previously determined direction and gradient from the existing onsite monitoring well network. Groundwater is first encountered between 64.5 and 66.5 feet bgs. The flow direction is approximately south-southeast with a relatively flat gradient of about 0.001 ft/ft (about 5 feet per mile).
- TPH-diesel and pesticides were not detected in any groundwater samples. SVOCs, except for bis (2ethylhexyl) phthalate at 5.8 and 61 μg/L in TMW-8 and TMW-9 respectively were not detected in any soil samples. TPH-gasoline was detected in all groundwater samples ranging from 0.2 to 3.5 mg/L.
- VOCs were detected in all groundwater samples. TCE and 1,1-DCE had the highest concentrations detected at TMW-2 at 34,000, and 36,000 µg/L, respectively. Detections of 1,1,1-TCA, *cis*-1,2-DCE, and trans-1,2-DCE were also associated with the TCE and 1,1-DCE. Wells TMW-4, TMW-7 and TMW-8 also had similar distributions of chemical detections but at decreasing concentrations going downgradient. All these wells had 1,1-DCE at levels similar to or higher than TCE along with the same related compounds. Wells TMW-1 and TMW-9 also have chemical distributions similar to TMW-2 and the associated downgradient wells but at substantially lower concentrations.
- Wells TMW-3, TMW-5, and TMW-6 contained VOCs too but in different combinations than at TMW-2. The concentrations of TCE was much higher than 1,1-DCE in these wells. No other VOCs were detected in these wells and Chloroform was detected in these wells at its highest concentrations.
- Based on the preliminary round of data collected for this report, TCE, 1,1,1-TCA and 1,1,2-TCA are likely present as the "parent" compounds at the "Facility."
- 1,1-DCE and 1,1-DCA are common transformation products of 1,1,1-TCA. 1,1-DCE is
 produced by a chemical reaction termed an elimination reaction. 1,1-DCA is produced
 as a result of an anaerobic biological reaction termed reductive dechlorination.
- Cis-1,2-DCE and trans-1,2-DCE are common transformation products of TCE formed by biologically mediated reductive dechlorination.

6 RECOMMENDATIONS

The chemical concentrations for TCE and 1,1-DCE in groundwater are higher than previous results from areas north and east of Buildings 1 and 2, but have similar chemical distributions. The distributions of chemicals from this one-time, preliminary sampling round suggests the possibility of originating from more than one source.

It is suggested that additional rounds of groundwater sampling be initiated, and that sampling combine the nine temporary groundwater monitoring wells and the existing groundwater monitoring well network on site.

7 REFERENCES

- California Department of Water Resources, 1961, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A, Ground Water Geology, CDWR Bulletin 104.
- Kennedy/Jenks Consultants, 1997a, Parcel A, Phase II Soil Characterization, McDonnell Douglas Realty Company, C-6 Facility, Los Angeles, California.
- Kennedy/Jenks Consultants, 1997b, Groundwater Monitoring Data Summary Report, Fourth Quarter 1996, Douglas Aircraft company C-6 Facility, Torrance, California.
- Poland, J. F., Garrett, A. A., and Sinnott, A., 1959, "Geology, Hydrology, and Chemical Character of the Ground Waters in the Torrance- Santa Monica, California," USGS Water Supply Paper 1461, U.S. Government Printing Office, Washington, D.C.
- Woodward Clyde Consultants, 1990, Douglas Aircraft Company Torrance (C-6) Facility, Phase III Groundwater and Soil Investigation Report, March 1990.

TABLES

TABLE 1 MONITORING WELL CONSTRUCTION DETAILS

BOEING REALTY COMPANY, C-6 FACILITY LOS ANGELES, CALIFORNIA K/J 984006.00

Well	Date Constructed	Well Diameter (inches)	Total Depth of Borehole (Feet)	Depth of Screened Interval (Feet)	Depth to top of Sand Filter Pack (Feet)	Well Casing Material and Slot Size	Hydrogeologic Unit Screened
TMW-1	6/28/98	2	98	61-81	29	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-2	6/28/98	2	87	62-82	29	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-3	7/21/98	2	87	62.5-82.5	09	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-4	86/06/9	2	98	60-80	28	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-5	7/2/98	2	98	61.3-81.3	6.85	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-6	7/1/98	2	98	61.2-81.2	59.1	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-7	6/29/98	2	89.5	64-84	62	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-8	6/29/98	2	89.5	61-81	29	Schedule 40 PVC0.010-Inch Slots	Shallow
TMW-9	86/06/9	2	98	61-81	59	Schedule 40 PVC0.010-Inch Slots	Shallow

TABLE 2 SUMMARY OF GROUNDWATER ELEVATION DATA

BOEING REALTY COMPANY, C-6 FACILITY LOS ANGELES, CALIFORNIA K/J 984006.00

Well	Reference Point ^{1,2} Elevation		
	(Feet Above MSL)	7/1	5/98
		Depth ³	Elevation
WCC-3S	51.12	64.52	-13.40
WCC-4S	49.58	63.14	-13.56
WCC-5S	48.10	NF	•
WCC-6S	51.32	65.01	-13.69
WCC-7S	48.29	NA_	-
WCC-9S	46.90	NF	-
WCC-10S	51.14	63.67	-12.53
WCC-11S	49.85	NF	-
WCC-12S	46.84	60.80	-13.96
DAC-P1	52.30	65.58	-13.28
TMW-1	52.41	65.82	-13.41
TMW-2	52.12	65.54	-13.42
TMW-3	51,90	66.07	-14.17
TMW-4	51.85	66.25	-14.40
TMW-5	51.32	65.94	-14.62
TMW-6	51.18	65.89	-14.71
TMW-7	52.25	66.23	-13.98
TMW-8	52.42	66.27	-13.85
TMW-9	52.46	66.54	-14.08

Notes:

- 1. Reference point is north side, top of well casing
- 2. Reference points were surveyed 2 September 1998.
- 3. Depth in feet below reference point.
- NF Well not found, covered as a result of construction activities. Depth to water not measured.
 (These wells were subsequently uncovered and are currently accessible.)
- 5. NA Well not accessible. Depth to water not measured.

TABLE 3 CHEMICAL ANALYTICAL RESULTS: VOLATILE ORGANIC COMPOUNDS AND PETROLEUM HYDROCARBONS IN SOILS (EPA Methods 8260 and 8015M)

Boeing Realty Company, C-6 Facility Los Angeles, California K/J 984006.00

Area	Well	Depth (ft bgs)	Chloroform	1,1-Dichloroethane	1,1-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene	Naphthalene	cis-1,2-Dichloroethene	TPH-Gasoline	TPH-Diesel
<u></u>	Detection L	imit (μg/kg)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5.0 mg/kg	8.0 mg/kg
Bldg. 1	TMW-1	3										
	TMW-1	5										
	TMW-1	10						11				
1	TMW-1	20			4.2			24				
Ĭ	TMW-1	30			9.2			55				
	TMW-1	40			9			36				
	TMW-1	50			3.9			15				<u> </u>
<u> </u>	TMW-1	66			23			17				
	I								_			
Bldg.1	TMW-2	1						17				27
	TMW-2	5			2.6			12				21
	TMW-2	10			32			78				
	TMW-2	20		4.5	59		5.1	180				
	TMW-2	30	4.1	11	140	2.8	21	300		5.7		
	TMW-2 TMW-2	40 50	5.7	16	13 82	2.7	69	65 230		9.5		
	TMW-2	66	3.7	57	340	2.1	54	1000		39		
L	110104-2	00		37	340		34	1000		<u>55</u>		
Bldg. 2	TMW-3	3	_					49				
Diog. 2	TMW-3	5						48				
	TMW-3	10						48				
	TMW-3	20		2.9	9.9	, ,	7.1	250		4.9		
	TMW-3	30						24				
	TMW-3	40						30				
•	TMW-3	50						92				
\	TMW-3	66						1100				
										·		
Bldg. 2	TMW-4	1										
	TMW-4	5										
	TMW-4	10						8.6				
1	TMW-4	20						9				
1	TMW-4	30						19				
1	TMW-4	40						7				
	TMW-4	50						51		<u> </u>		
	TMW-4	65	21		16			240				

Note:

Blank cell indicates constituent result was below the detection limit.

TABLE 3 CHEMICAL ANALYTICAL RESULTS: VOLATILE ORGANIC COMPOUNDS AND PETROLEUM HYDROCARBONS IN SOILS (EPA Methods 8260 and 8015M)

Boeing Realty Company, C-6 Facility Los Angeles, California K/J 984006.00

Area	Well Detection L	Depth (ft bgs)	Chloroform	1,1-Dichloroethane	1,1-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene	Naphthalene	cls-1,2-Dichloroethene	TPH-Gasoline	TPH- Diesel
	,, 		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5.0 mg/kg	8.0 mg/kg
Bldg. 1	TMW-1	3										
	TMW-1	5										
}	TMW-1	10						11				
	TMW-1	20			4.2			24				
	TMW-1	30			9.2			55				
	TMW-1	40			9			36				
	TMW-1	50			3.9			15				
L	TMW-1	66			23			17				L
Bldg.1	TMW-2	1						17				
	TMW-2	5			2.6			12				27
	TMW-2	10			32			78				
	TMW-2	20		4.5	59		5.1	180				
	TMW-2	30	4.1	11	140	2.8	21	300		5.7		
	TMW-2	40			13			65				
	TMW-2	50	5.7	16	82	2.7	69	230		9.5		
	TMW-2	66		57	340		54	1000		39		
Bldg. 2	TMW-3	3						49				
Didg. 2	TMW-3	5						48				
	TMW-3	10						48				
	TMW-3	20		2.9	9.9		7.1	250		4.9		
	TMW-3	30						24		7.5		
	TMW-3	40						30				
	TMW-3	50						92				
	TMW-3	66						1100				
Did: 0		· · · · · · · · · · · · · · · · · · ·										
Bldg. 2	TMW-4	1 5							_			
	TMW-4	5 10										
	TMW-4							8.6				
	TMW-4	20						9				
	TMW-4	30 40						19				
	TMW-4							7 51				
	TMW-4	50 65										
L	TMW-4	65	21		16			240		لـــــــا		

TABLE 3 CHEMICAL ANALYTICAL RESULTS: VOLATILE ORGANIC COMPOUNDS AND PETROLEUM HYDROCARBONS IN SOILS (EPA Methods 8260 and 8015M)

Boeing Realty Company, C-6 Facility Los Angeles, California K/J 984006.00

,		,						· · · · · · · · · · · · · · · · · · ·			·	
Area	Well	Depth (ft bgs)	Chloroform	1,1-Dichloroethane	1,1-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene	Naphthalene	cis-1,2-Dichloroethene	TPH-Gasoline	TPH- Diesel
	Detection L	imit (μg/kg)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5.0 mg/kg	8.0 mg/kg
Bldg. 2	TMW-5	1					T T	91		2.7		
	TMW-5	5						91		4		
	TMW-5	10					 	56				
	TMW-5	20						190		3.5		
	TMW-5	30					 	30	2.9	_		
	TMW-5	40						9.9				
	TMW-5	50						320				
	TMW-5	65		t				910				
Bidg. 2	TMW-6	1		<u> </u>								
Bidg. 2	TMW-6	5					 					
	TMW-6	10					-					ļ
ļ	TMW-6	20						2.9			<u> </u>	
	TMW-6	30		ļ			 	9.8				
	TMW-6	40						8.8				
	TMW-6	50		-			 	0.0			<u> </u>	
	TMW-6	65							- -			
L				<u> </u>			<u> </u>				1	I
Outside Bldg 1	TMW-7	1										
	TMW-7	5		ļ				3				
	TMW-7	10						13				
	TMW-7	20					<u> </u>	38				
ļ	TMW-7	30						35				
	TMW-7	40		<u> </u>				100				
	TMW-7	50						50				
L	TMW-7	65			6.7		<u> </u>	380	4.2	L		
Outside Bldg 1	TMW-8	1										
	TMW-8	5										
	TMW-8	10						3.4				
	TMW-8	20						5.6				
	TMW-8	30			3.5			13				
	TMW-8	40			2.8			12				
ļ	TMW-8	50						14				
L	TMW-8	65			23			210				13
Bidg. 1	TMW-9	1		T		· · · · · · · · · · · · · · · · · · ·		14				
	TMW-9	5		1	\vdash			11				
	TMW-9	10		<u> </u>	 	<u> </u>		7.6				
\	TMW-9	20		†	l		 	16	-			
1	TMW-9	30		1		T		32		 	1	
	TMW-9	40		†		<u> </u>	1	8.5				
	TMW-9	50		1	 		1	73				
	TMW-9	65						340				

Note:

Blank cell indicates constituent result was below the detection limit.

TALL - 4 CHEMICAL ANALYTICAL RESULTS: SEMI-VOLATILE ORGANIC COMPOUNDS IN SOILS (EPA Method 8270)

Boeing Realty Company, C-6 Facility Los Angeles, California

K/J 984006.00

Area		Bldg 1							Bldg 1								
Well	Detection Lir	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1	TMW-1	TMW-2							
Depth (ft bgs)	mit (µg/kg)	3	2	10	20	30	40	20	99	1	5	10	20	30	40	20	99
Acenaphthene	100	110							_								
ənəɔsrıtinA	100	230	130							110							
Benz(a)anthracene	100	2500	1500							160							-
Benzo(b)fluoranthene	250	3000	1700														
Benzo(k)fluoranthene	250	1800	1200			-											
analynaq(i,ń,ţ)oznaB	250	<u> </u>	1100														
Benzo(a)pyrene	250	3000	1700														
Сһгус	0	3100	1800	_						170							
Dibenz(a,h)anthracene	100	006	530														
Fluoranthene	100	Ė								380				_			
Fluorene	100	4000	2400			-			<u> </u>						_		
Hexachlorobenzene	le					<u> </u>			<u> </u>								
enenyq(bɔ-ɛ,2,t)onebnl	250	II .															
Phenanthrene	100	1300	740							400							
Pyrene	100	3400	2000							270							

Note: Blank cell indicates constituent result was below the detection limit.

Temporary Groundwater Wells 98400600.001

TAL _ 4
CHEMICAL ANALYTICAL RESULTS:
SEMI-VOLATILE ORGANIC COMPOUNDS IN SOILS
(EPA Method 8270)

Boeing Realty Company, C-6 Facility Los Angeles, California

K/J 984006.00

	Area		Bldg 2	-		_				_	Bldg 2							
	Well	Detection Lin	TMW-3	TMW-3	TMW-3	TMW-3	TMW-3	TMW-3	TMW-3	TMW-3	TMW-4	TMW-4	TMW-4	TMW-4	TMW-4	TMW-4	TMW-4	TMW-4
Depth (ft	(sbq	mit (µg/kg)	1	5	10	20	30	40	909	92	1	5	10	20	30	40	20	65
naphthene	ээ	100																
hracene		0									_							\dashv
z(a)anthracene		o																\dashv
zo(b)fluoranthene		0									_							\dashv
zo(k)fluoranthene	Ber	250																\dashv
əuəl⁄nəd(i,ń,ೞ)oz		0							_									\dashv
zo(s)bλιευe	Ber	250																\dashv
	_	o	-															
enz(a,h)anthracene		0																\dashv
oranthene		ွ																
orene		g																\dashv
achlorobenzene	-	0																_
eneriq(bɔ-ɛ,2,1)ons		0																\dashv
nanthrene	эча	100					-											\dashv
əue	Pyr	9																

Note: Blank cell indicates constituent result was below the detection limit.

Temporary Groundwater Wells 98400600.001

TALLE 4 CHEMICAL ANALYTICAL RESULTS: SEMI-VOLATILE ORGANIC COMPOUNDS IN SOILS (EPA Method 8270)

Boeing Realty Company, C-6 Facility Los Angeles, California

K/J 984006.00

Area		Bldg 2								Bldg 2		-					
Well	Detection Lir	TMW-5	TMW-5	TMW-5	TMW-5	TMW-5	TMW-5	TMW-5	TMW-5	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6
Depth (ft bgs)	mit (µg/kg)	1	5	10	20	30	40	20	65	1	5	10	20	30	40	20	65
Acensphthene	100																
enesendynA	100																
Benz(a)anthracene	100																\dashv
Benzo(b)fluoranthene	250																\dashv
Benzo(k)fluoranthene	250	_															\dashv
Benzo(g,i,d,g)ozna 8																	
Benzo(a)pyrene	250																
Сунузеле	100	_															
Dibenz(a,h)anthracene	100				ļ												
Fluoranthene	100	-	<u> </u>														-
Fluorene	100	<u> </u>								_							
Hexachlorobenzene	0	_	-			_			_	-							
Indeno(1,2,3-cd)pyrene	250																
Phenanthrene	100	-										<u> </u>					
Pyrene	<u>6</u>						T										

Note: Blank cell indicates constituent result was below the detection limit.

Temporary Groundwater Wells 98400600.001

TAL 4
CHEMICAL ANALYTICAL RESULTS:
SEMI-VOLATILE ORGANIC COMPOUNDS IN SOILS
(EPA Method 8270)

Boeing Realty Company, C-6 Facility Los Angeles, California

K/J 984006.00

	_																
Pyrene	100																
Phenanthrene	100																
Pindeno(1,2,5,3-cd)pyrene	250																
Hexachlorobenzene	100																
Fluorene	100																
Fluoranthene	100																
Dibenz(a,h)anthracene	100																
Chrysene	100																
Benzo(a)pyrene	250																
Benzo(g,h,i)perylene	250																
geuzo(k)tinoranthene	250																
Benzo(b)fluoranthene	250																
Benz(a)anthracene	100																
Anthracene	100																
Acenaphthene	100																
Depth (ft bgs)	imit (µg/kg)	1	5	5	20	30	40	20	65	_	5	10	20	30	40	20	92
Well	Detection Lim	TMW-7	TMW-7	TMW-7	TMW-7	T-WM-7	TMW-7	TMW-7	TMW-7	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8
Area		Outside			-				-	Outside			-				

Note: Blank cell indicates constituent result was below the detection limit.

Temporary Groundwater Wells 98400600.001

TAbec 4 CHEMICAL ANALYTICAL RESULTS: SEMI-VOLATILE ORGANIC COMPOUNDS IN SOILS (EPA Method 8270)

Boeing Realty Company, C-6 Facility Los Angeles, California

K/J 984006.00

-lexachlorobenzene								_	
Fluorene	ļ	<u> </u>							<u> </u>
Jibenz(a,h)anthracene	ļ								
Shrysene	ļ	_					L	_	
genzo(a)pyrene	250	-							
enslyneq(i,n,g)ozne8]								
genzo(k)fluoranthene	္က				_				
3enzo(b)fluoranthene	ွ								
Anthracene 3enz(a)anthracene	8	_			_	_			
Acenaphthene	100					_			
Depth (ft bgs)	nit (µg/kg)	1	2	5	20	30	40	8	99
Well	Detection Lin	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9
Area		Bldg 1							

Temporary Groundwater Wells 98400600.001

TABLE 5 CHEMICAL ANALYTICAL RESULTS: TITLE 22 METALS IN SOILS

Boeing Reatty Company, C-6 Facility Los Angeles, California K/J 984006.00

		Samula	Antimony	Arconic	Bartum	Randillum	Cadmium	Chromium (Vi)	Chromium Tot	Cohalf	Conner	peal	Marchin	Molyhdenim	Nickel	Selentium	Silvar	Thaillim	Vanadium	2105
Area	Sample LD.	Depth (ff. bas)	EPA 6010 (ma/kg)			EPA 6010	EPA 6010	EPA 7196	EPA 6010 (ma/kg)	EPA 6010	EPA 6010	2 -	EPA 7471	EPA 6010	EPA 6010		EPA 6010			EPA 6010
	STLC	STLC Limits (mg/l)	15		1001	0.75	1.0		A STATE OF THE STA			5.0	0.2	350			5.0	7.0	24	250
	TLC Lin	TTLC Limits (mg/kg)	200		9	75	100	200	2500	8000	2500	1000	50	3500	2000	100	200	200	2400	2000
	Detection L	Detection Limit (mg/kg)	5.0	1.0	0.1	0.1	0.1	0.5				1.0	0.01	0.5			0.1	5.0	0.5	0.1
Bidg 1	TMW-1	3		3.1	130	0.59			21			5.9			15				46	47
	TMW-1	5		3.2	130	9.0			22	11		7.8			16				47	20
	TMW-1	9		4.9		0.79			29			5.8			25				8	72
	TMW-1	8		2.9		0.64			23			4.2			2				23	2
	TMW-1	8		4.2	\$ 1	0.52			21			4.2			20				25	28
	I MW-1	9 3		3.9	20 20				13			2.8	1		9.4				77	¢7
	TMW-1	99		•	99				20		23	4.4			16			†	3	45
Bidg 1	TMW-2	-		3.4	120	0.58			20						16				47	47
	TMW-2	5		2.3	160	0.7			24						11				47	41
	TMW-2	\$		3.4	120	0.52	Ŧ		21						18				51	59
	TMW-2	20		4	130	0.71			30	13	31	S			22				28	67
	TMW-2	8		5.2		0.54	0.55		23						21				25	62
	TMW-2	8		5.7					15]					13				4	28
	TMW-2	20		12	33				9.8	4		4.			9				9	25
	TMW-2	99		2.4	8	0.58			24						2.4		1		49	8
	2 2 2 2 2	ľ			1	-5					L				[-	9	[
z fiona	C-AAM-S	? -		7.7	OC.	7C'0			717			8.0			11				8	3
-	IMW-3	1		3.5	200	0.56			21			6.5			14				4	23
	I MW-3	2 8		4 0	2,5	0.03			2 2	-		200			- 8				*	8 3
	TAKIN'S	2 8		6.7	OC S	60.0			24			0.0			2 5		1		\$ 5	\$ 5
	TMW-3	8 8		3.1	£ 5				0.4	2.8	8. P	5 +			4.7				2 5	1 18
	TMW-3	1 25		96	5.				14			3.3			13				33	30
	TMW-3	99		3.9	130	0.55			27		22	7.9			19				8	55
Bidg 2	TMW-4	+		2.4	110	0.58			19						1				44	9
	TMW-4	5		3.5	130	0.67			23						18				52	58
	TMW-4	10.0		2.5	130				23	Ξ	21				16				43	99
	TMW-4	20.0		3.7	150	0.56			23			4.4			19				51	62
	TMW-4	30.0		3.6	120				16						15				4	47
	TMW-4	40.0		4.9	26				=						9.6				24	78
	TMW-4	20.0		12	188				30	6		9		1.7	16			+	23	99
	TMW-4	65.0		3.3	75				24						25				4	88
Bldg 2	TMW-5	1.0		1.7	220	1.3	0.31		39	21.0		Ξ		1.5		5.1	4.2		75	74
	TMW-5	5		9.6	240	1.1	0.24		41			9.7				4.5			92	110
	TMW-5	10		8.1	210	0.94	0.33		41	22		8.9			32	3.4			88	110
	TMW-5	20		9.5	220	0.94	99'0		36			9.4		0.74	29	3.1			78	96
	TMW-5	30		11	8	0.28	0.14		24			4.6			15	2.8			47	87
	TMW-5	\$		7.3	39	0.15	0.19		15			3.6			1	2.6	Ì		56	45
	TMW-5	22		16	260	=	0.1		46	92	8	12			41	2.9			77	5
	TMW-5	99		5.9	160	9.0			34			F			29	2.4			721	83
Note																				

Note:
Blank cell indicates constituent result was below the detection itmit.
1. Chromium (VI) analysis was performed if total Chromium exceeded 0.10 mg/kg.

TABLE 5 CHEMICAL ANALYTICAL RESULTS: TITLE 22 METALS IN SOILS

Boeing Realty Company, C-6 Facility Los Angeles, California KJ 984006.00

Zinc EPA 6010 (mg/kg)	250	2000	0.1	33	92	22	67	49	19	54	20	28	62	89	92	75	98	50	52	38	46	77	8	2	8	24	24		32	38	61	71	73	30	74	28
	24	2400	0.5	23	43	41	46	30	28	32	12	14	99	83	26	73	49	16	9	64	45	99	26	67	4	20	32	-	32	45	22	25	74	24	35	17
Vanadium 0 EPA 6010 (mg/kg)	0	0		L										L	L	_						_														
Thaille EPA 60 (mg/k		700																																		
Silver EPA 6010 (mg/kg)	5.0	200	0.1																																	
Selentum EPA 6010 (mg/kg)	1.0	100	1.0																																	
Nickei EPA 6010 (mg/kg)	20	2000	0.5	7.1	13	11	18	13	15	19	5.9	15	23	25	20	26	26	6.1	23	Ŧ	13	56	19	23	17	7.6	20.0		10	21	25	20	29.0	8.5	24	6
Molybdenum EPA 6010 (mg/kg)	350	3500	0.5						4																								1.1			
Mercury EPA 7471 (mg/kg)	0.2	2	0.01																																	
Lead EPA 6010 (mg/kg)	5.0	1000	1.0	3.4	4.3	4.1	3.8	3.2	4.1	3.4	1.6	16		5.3			4.8	1.6	3.5					5.2	١		2.5		4	4	5.1	5.5	9.9	1.7	5.9	2.1
Copper EPA 6010 (mg/kg)	25	2500	0.1	12	34	23	26	16	10	18	9	18	19	33	30	37	38	3.1	22	15	12	32	26	33	23	4.1	20		16	14	36	31	41	6.1	31	9.5
Cobalt EPA 6010 (mg/kg)	90	8000	0.5	6.9	10	11	11	7.8	6.7	8.0	3.7	12	15	14	14.0	16	17	3.7	=	9.3	=	15	13	13	9	4.4	10		9.5	11	13	13	14	4.8	11	5.1
Chromlum Tot. EPA 6010 (mg/kg)	260	2500	0.05	12	19	18	20	18	7	16	9.3	18	29	28	24	28	28	9.6	21	18	17	30	22	25	22	=	19		15	31	28	23	31	12	24	11
Chromium (VI) ¹ EPA 7196 (mg/kg)	5.0	200	0.5																																	
Cadmlum EPA 6010 (mg/kg)	1.0	90	0.1						0.91																											
Beryllium EPA 6010 (mg/kg)	0.75	75	0.1		9.0	0.51	0.63	0.53					0.82	0.71		99.0	0.74				0.51	0.81	0.57	0.64	0.54					0.54	0.67	0.68	0.72			
	100	10000	0.1	89	83	8	110	100	570	64	25	120	150	180	166	180	230	59	攻	8	120	150	150	180	130	98	28		120	100	160	160	200	45	96	36
Arsenic Barlum EPA 6010 EPA 6010 (mg/kg) (mg/kg)	5.0	200	1.0		2.7	2.8	2.7	1.9	4	11		3.6	4.5	5.7	3.7	8	9.3	13	2.1	2.6	2.4	6.1	4.2	9.9	3.5	16	3.1		2.1	2.3	4.7	4.6	8.4	4.5	8.7	
Antimony EPA 6010 E (mg/kg)	15	200	2.0																																	
Sample / Depth (ff. bgs)	lts (mg/l)	s (mg/kg)	it (mg/kg)	=	ic.	10	20	30	40	20	99	-	2	2	8	30	9	20	65	-	2	9	20	႙	\$	Σ.	65		-	9	9	20	30	40	20	65
Sample I.D.	STLC Limits (mg/l)	TTLC Limits (mg/kg)	Detection Limit (mg/kg)	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-6	TMW-7	TMW-7	TMW-7	TWW-7	TMW-7	TMW-7	T-WMT	TMW-7	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8	TMW-8		TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9	TMW-9
Area				Bldg 2								Outside TMW-7								Outside				1				Г	Bldg 1							4-2

Note: Blank cell indicates constituent result was below the detection limit.
1. Chromium (VI) analysis was performed if total Chromium exceeded 0.10 mg/kg.

TABLE 6 COMPARISON OF SITE TITLE 22 METALS CONCENTRATIONS IN SOIL SAMPLES WITH COMMON SOIL CONCENTRATIONS AND STATE THRESHOLD LIMIT VALUES

Boeing Realty Company, C-6 Facility Los Angeles, California K/J 984006.00

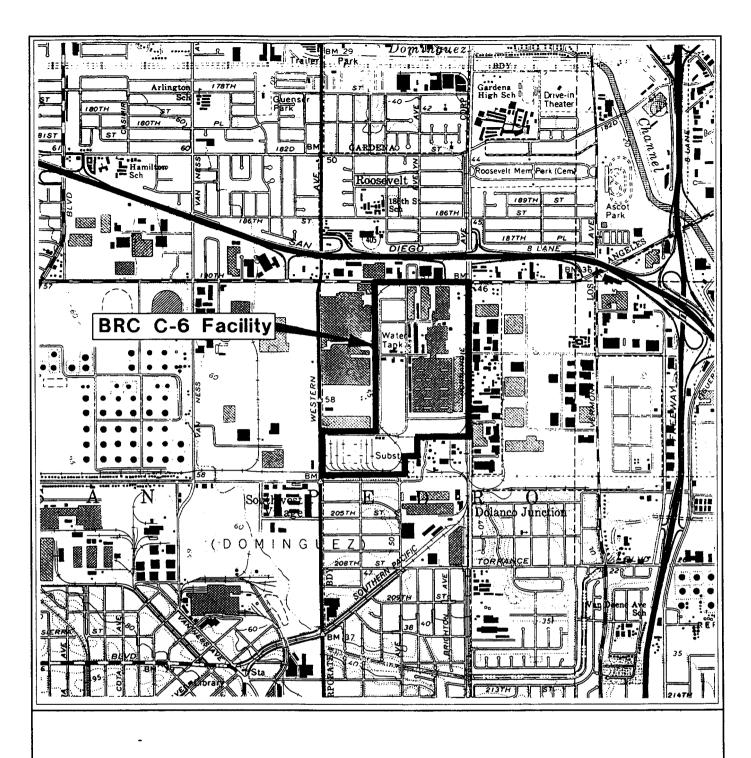
					ncentrati		Common Range	CCR		c)
Tested				Detecte	ed at C-6 I	Facility	in Soils ^(a)	TTLC ^(b) Value	STLC	^{c)} Value
Inorganic	Number of	Number of	Detection		(mg/kg)					
Chemical	Analyses	Detections	Rate	Min.	Max.	Avg.	(ppm)	(mg/kg)	(m	g/l)
Antimony	796	0	0.0%	0	0	0	<1 - 2.6 ^(d)	500	15	
Arsenic	796	8	1.0%	12	350	110	1 - 50	500	5	
Barium	796	796	100%	7	250	100	100 - 3,000	10,000	100	
Beryllium	796	0	0.0%	0	0	0	0.1 - 40	75	0	.75
Cadmium	796	4	0.5%	5	9	6	0.01 - 0.7	100	1	.0
Chromium (VI)	796	0	0.0%	0	0	0	Not Available	500	560	
Chromium Total	796	796	100%	3	150	25	1 - 1,000	2,500	5	
Cobalt	796	796	100%	1	47	7	1 - 40	8,000	80	
Copper	796	796	100%	1	81	13	2 - 100	2,500	25	
Lead	796	11	1.4%	3	72	24		1,000	5	<u> </u>
Mercury	796	0	0.0%	0	0	0		20	0	.2
Molybdenum	796	0	0.0%	0	0	0	<3 - 7 ^(d)	3,500	350	
Nickel	796	795	100%	2	140	12	5 - 500	2,000	20	
Selenium	796	0	0.0%	0	0	0	0.1 - 2	100	1	
Silver	796	0	0.0%	0	0	0	0.01 - 5	500	5	,
Thallium	796	0	0.0%	0	0	0	2.4 - 31 ^(d)	700	7	<u> </u>
Vanadium	796	795	100%	5	66	28	20 - 500	2,400	24	
Zinc	796	796	100%	4	120	41	10 - 300	5,000	250	

mg/kg = milligrams per kilogram

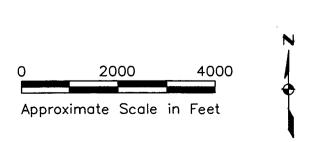
mg/l = milligrams per liter

ppm = parts per million

- (a) Chemical Equilibria in Soils. Willard L. Lindsay, John L. Wiley & sons, NY, 1979, unless noted otherwise.
- (b) California Code of Regulations (CCR), Title 22, Total Threshold Limit Concentration (TTLC) value. Value set to define a California hazardous waste based on the total concentration.
- (c) CCR, Title 22, Soluble Threshold Limit Concentration (STLC) value. Value set to define a California hazardous waste based on leachate concentration.
- (d) Element Concentrations in Soils and Other Surficial Materials of the Conterminious United States.
- H. T. Shacklette and J. G. Boemgen, USGS Professional Paper 1270, U.S. Government Printing Office, Washington, 1984.


SUMMARY OF CHEMICAL ANALYTICAL RESULTS: VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS, FUEL HYDROCARBONS, AND METALS IN GROUNDWATER (EPA Methods 8260, 8270, 8015M, 6010, and 7196) **TABLE 7**

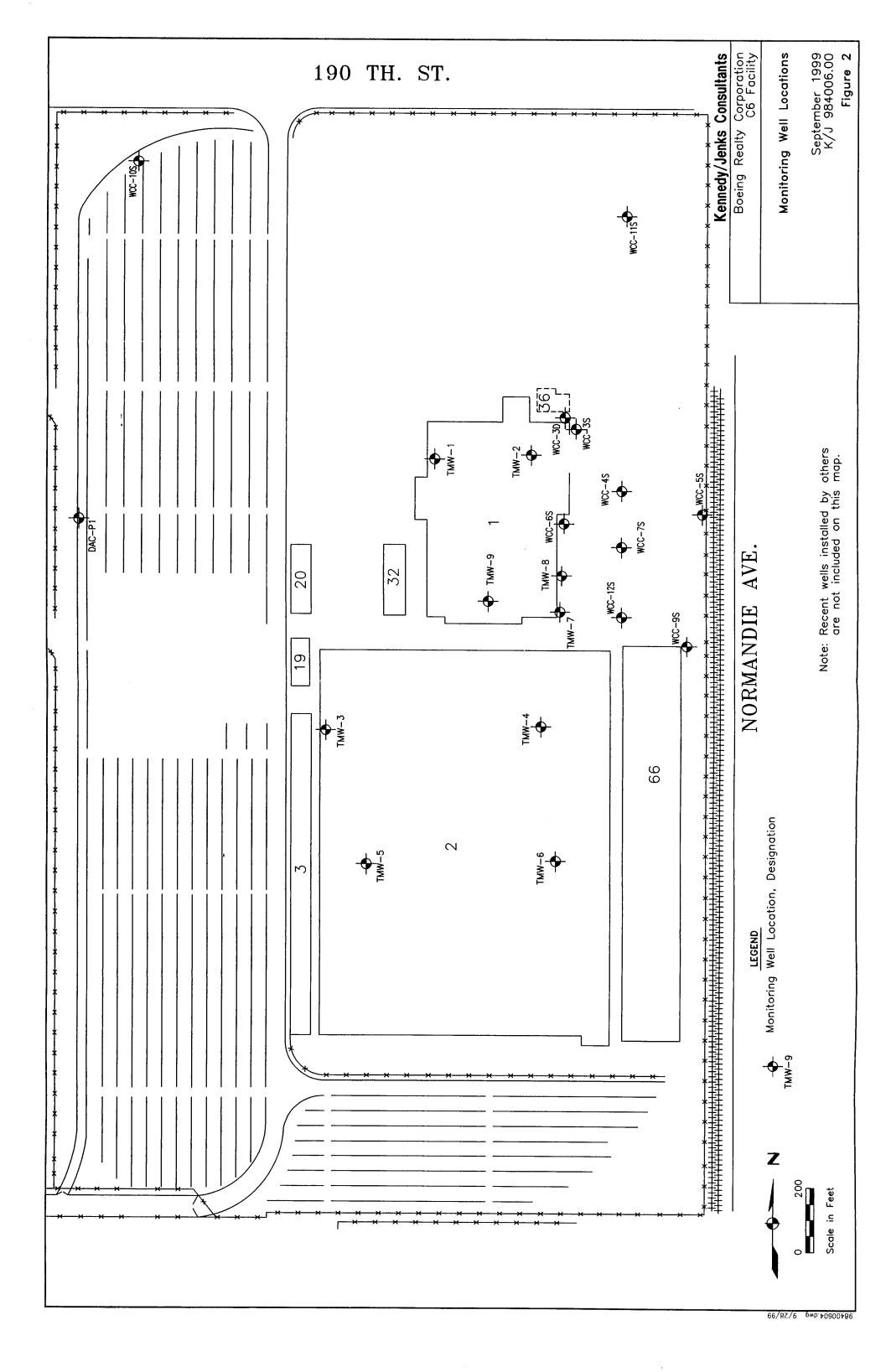
Boeing Realy Company, C-6 Facility Los Angeles, California K/J 984006.00

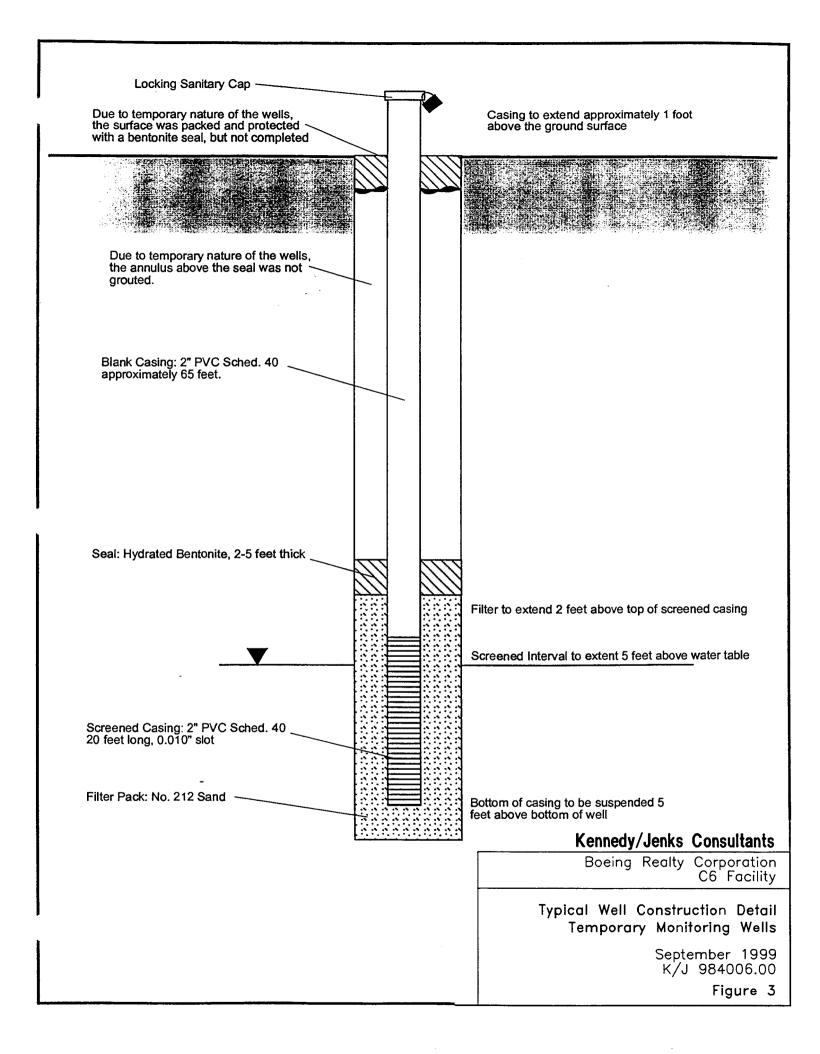

	Analytical Method						EPA 8260	3260						EPA 8270	EPA 8015m	EPA 6010	EPA 6010	EPA 7196	EPA 6010
		-					/bri							μg/L	mg/L		E	mg/L	
Area	Well	Petection Limit	Benzene	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	frans-1,2-DCE	DCE	ADT-1,1,1	ADT-S,1,1	ECE	cis-1,2-DCE	Bis(2-ethylhexyl) phthalate	Volatile Fuel Hydrocarbons	muins8	Chromium (VI)³	Chromium (total)	Zinc
												Detect	Detection Limit	3.0		0.010	0.010	0.010	0.010
Bldg. 1	TMW-1	5.0		7.1			006			12		540			0.20	0.20			0.022
Bldg. 1	TMW-2	250		320			36,000	630		6,900		34,000	710		13	0.23	0.13	0.13	0.029
Bldg. 2	TMW-3	20					200					8,100			3.5	0.053		0.016	0.093
Bldg. 2	TMW-4	22			22	49	1,500	99			43	2,300	110		06:0	0.075		0.011	0.013
Bldg. 2	TMW-5	25					460					3,700			1.3	0.025		0.015	
Bldg. 2	TMW-6	2.5		220			92					490	3.4		0.22	0.094		0.018	0.022
Bldg. 1	TMW-7	13	40	56	73	8	3,000	83		20	29	3,500	120		1.2	0.066			0.017
Bldg. 1	TMW-8	25	62	38	96	42	7,000	120		37	37	5,700	140	5.8	1.8	0.020			0.013
Bldg. 1	TMW-8 (dup)	25	61	40	66	44	2,000	120		39	32	5,800	140		1.8	0.066			0.019
Bldg. 1	TMW-9	1.0		2.9			24		2.1			290		61	0.14	090'0		0.015	

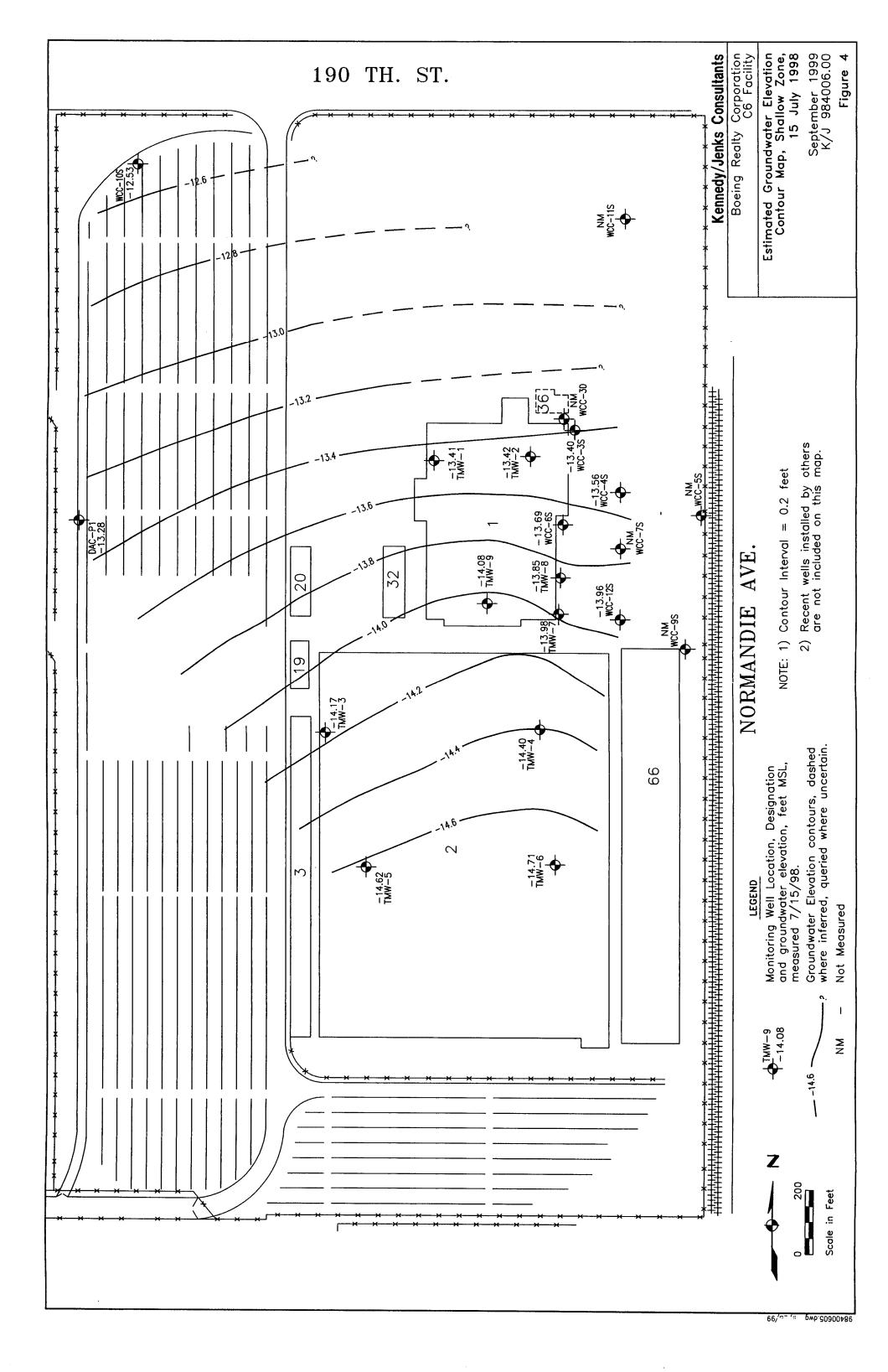
- Notes:
 Blank cell indicates constituent result was below the detection limit.
 Shaded cell indicates sample was not tested for the given constituent.
 1. Detection limits varied between well samples for volatile organics analyses.
 2. Dectection limits were consistent between well samples for semivolatile organics, fuel hydrocarbons, and metals analyses.
 3. Chromium (VI) analysis was performed only if total Chromium exceeded 0.10 mg/L.

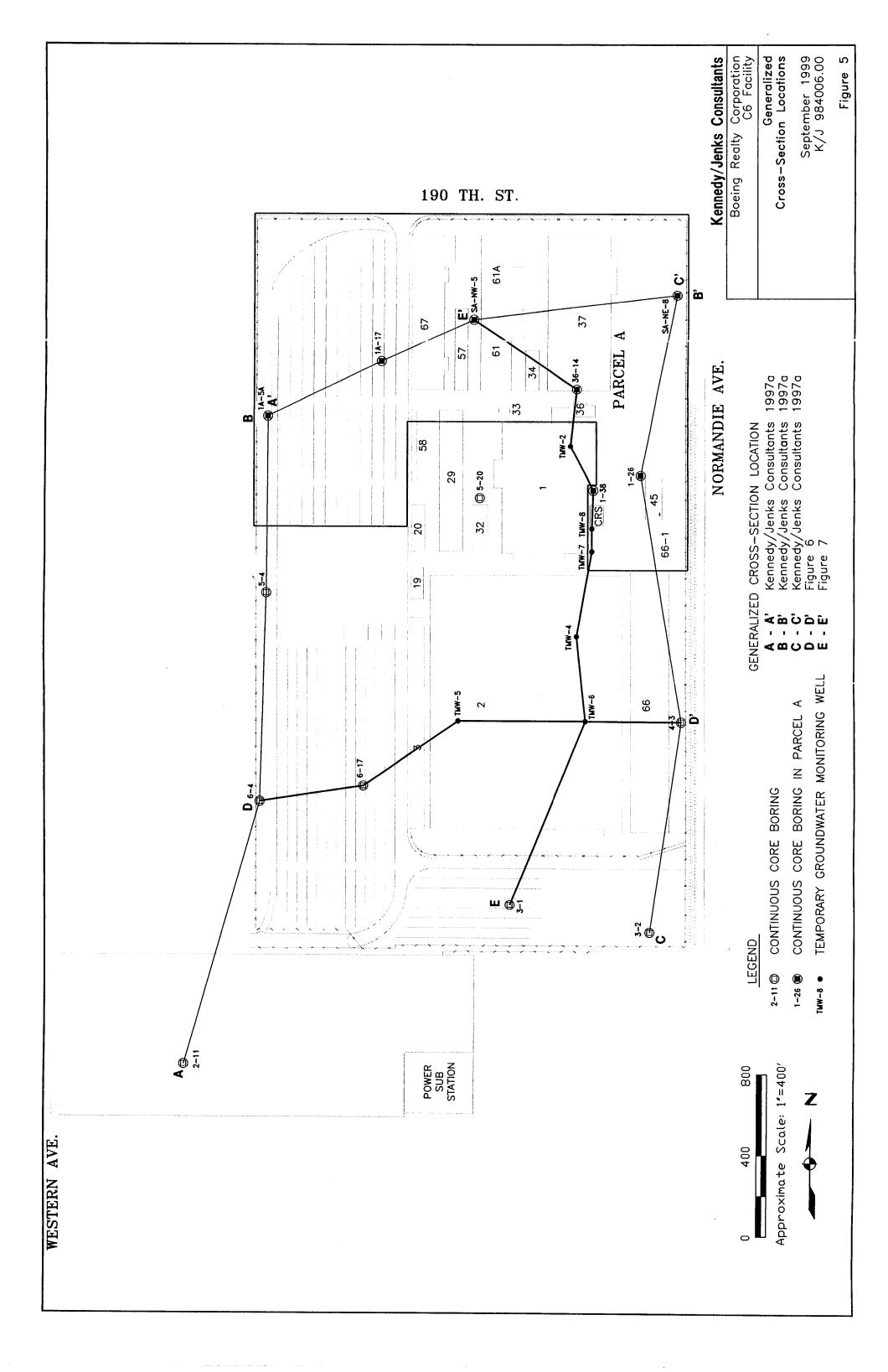
FIGURES

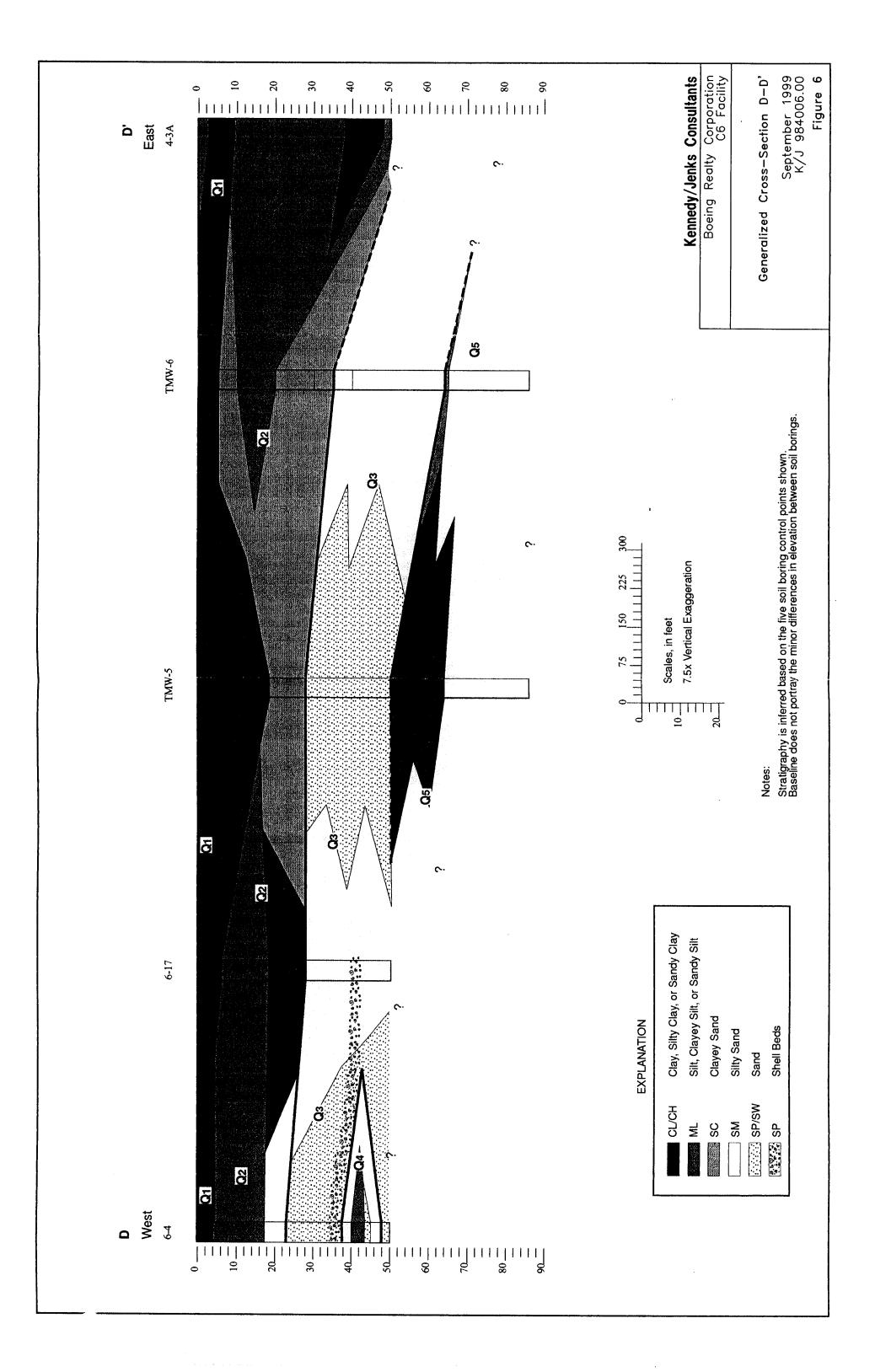
Source: Basemap modified from U.S.G.S. Torrance, California 7.5 Minute Quadrangle Photorevised 1981

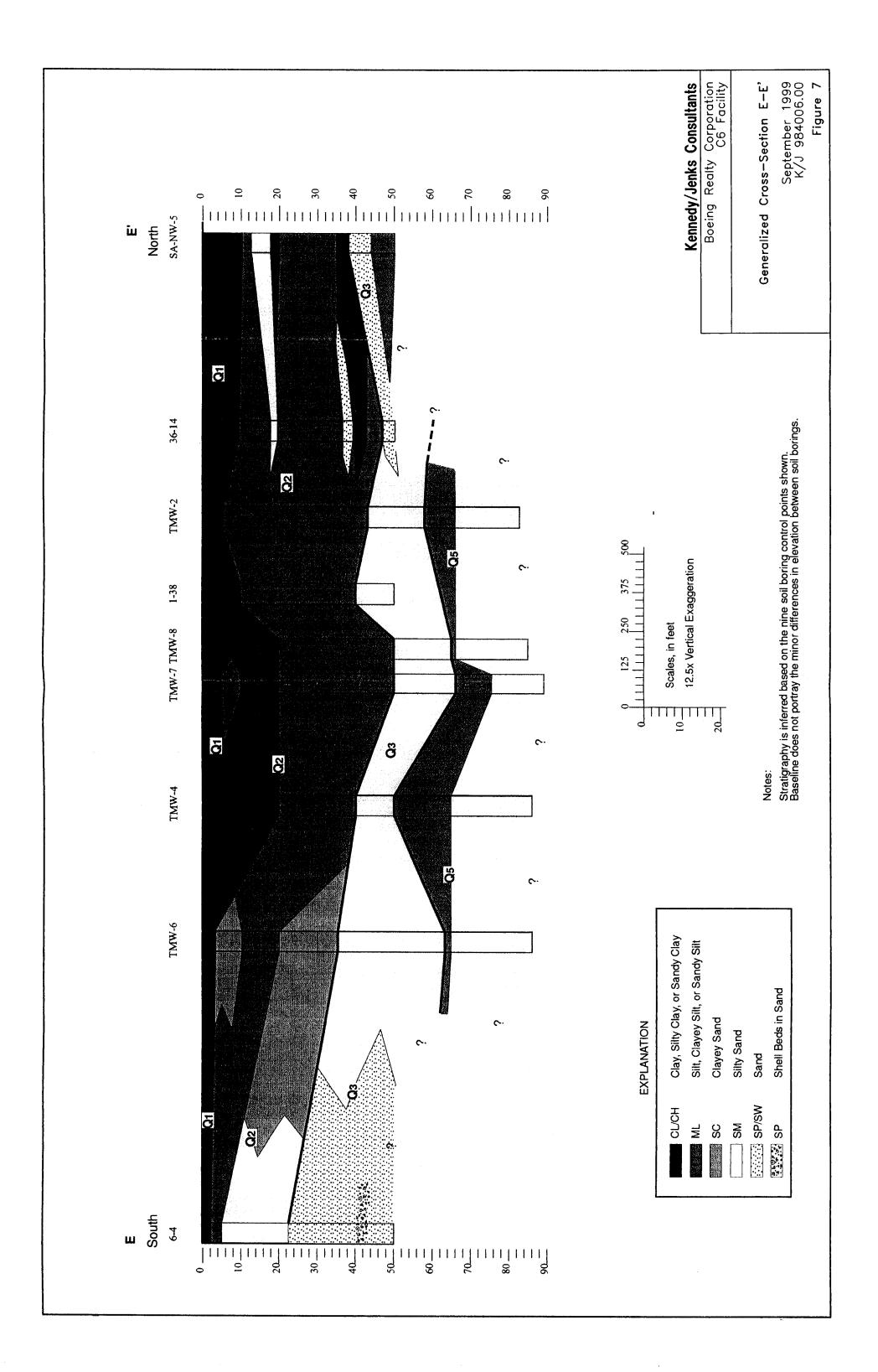

Kennedy/Jenks Consultants


Boeing Realty Company C6 Facility


Site Location Map


September 1999 K/J 984006.00


Figure 1



REGIONAL WATER QUALITY CONTROL BOARD CORRESPONDENCE

STATE OF CALIFORNIA—ENVIRONMENTAL PROTECTION AGENCY

PETE WILSON, Go

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

101 CENTRE MAZA DRIVE MONTEREY PARK, CA 91754-2156 (213) 266-7500 FAX: (213) 266-7600

May 20, 1998

Mr. Chris Stoker Integrated Environmental Services, Inc. 3990 Westerly Place, Suite 210 Newport Beach, CA 92660

TECHNICAL WORKPLAN, INSTALLATION OF TEMPORARY GROUNDWATER MONITORING WELLS - BOEING C-6 FACILITY, LOS ANGELES, CALIFORNIA (FILE NO. 100.315)

We have received and reviewed your Technical Workplan, Installation of Temporary Groundwater Monitoring Wells - Boeing C-6 Facility, Los Angeles, California, dated April 20, 1998. Our comments are as follows:

- 1) Include a contingency plan to collect and analyze soil samples if visible contamination, odors or PID readings indicate that contamination is present. Samples should be analyzed for the same suite of chemicals for which the groundwater is being tested.
- 2) Collect and analyze a soil sample from the capillary fringe in each boring. Samples should be analyzed for the same suite of chemicals for which the groundwater is being tested.
- 3) The workplan indicates that the annulus above the bentonite sanitary seal will be left open. The annulus must be filled should visible contamination, odors or PID readings indicate that soil contamination is present.

Should you have any questions regarding the above, please contact Hugh Marley at 213) 266-7669.

J.E. ROSS, Unit Chief Site Cleanup Unit

cc: Ms. Karen Baker, DTSC, Long Beach

Ms. Debbie Oudiz, Office of Scientific Affairs

Mr. Mario Stavale, Boeing Realty Corporation

Mr. Jeff Dhont, Federal EPA

Ec'd 5/26/98

APPENDIX B

BORING LOGS

BOR		OCATI			on rog							enks Consultants
L		Build COMP	ing 1			DRILLER				Boring/Well Name -	TMV	V-1
		West	Hazma	t			Ruben Lare	s		Project Name	Boeir	ng C-6
_		CME	OD (S) 75, Ho	llow S	tem Auger (LAR)	1	T (S) SIZE 8''				<u>9840(</u>	
BLA		ASING 2" PV	C Sch	edule 4	40	FROM	+1)	FT 61	ELEVATION Not Surveyed		TOTAL DEPTH 86 ft.
PER	FORA'	TED CA	SING		40, 0.010" slot	FROM	TO	,	FT	DATE STARTED 6/28/98		DATE COMPLETED
SIZI	AND	TYPE (OF FILTE	R PACK		FROM	61)	81 FT	DEPTH TO WATER		6/28/98
SEA	L	Lone	star 2/1	2 San	d	FROM			86	LOGGED BY	_	
GRO	UT	Envir	oplug l	Mediu	m Bentonite Chips	FROM	56		59	M. Balderman	1	WELL COMPLETION
_		No G	rout (T	empoi	rary Well)					i		□ SURFACE HOUSING NONE
				_						2" Split Barrel Sampler, 140 lb. Hammer		STAND PIPE FT
Driven		Blows Blows	Head Space Reading (mg/L.)	Depth (feet)	WELL CONSTRUCTION) и	Graphic Log	USCS Log	Munscil Color	SOIL DESCRIPT	ION AN	D DRILLING REMARKS
×		9	- 0,20							Concrete, 8"		
		12 15								Ī		-
	XX	12 15 14 14 21 12 17	0.2									
	XXXX	21 12	0.2					CL	7.5YR 3/3	with CaCO3	orown, da	imp, medium stiff to stiff, mottled
	ቖ	17 18	0.8	5-								
								CL	7.5YR 3/3	hard nodules of carbonate	up to 1/4	4", damp, medium stiff
										<u> </u>		- -
				_						ļ		<u>-</u>
				-						ļ		4
▓		18	0.9	10-				CL	7.5YR 4/4	Silty CLAY: brown, trace	of fine s	and, damp, stiff
•	**	40								-		-
<u>.</u>				-						-		-
				-						_		-
F				-						-		
				15-								-
										-		
▐	ł			-						<u> </u>		-
H								•		-		-
588				1						} 	·	-
		9 30 32	1.0	20-				ѕм	7.5YR 4/4	Fine Silty SAND: brown,	60% san	d, trace of fine mica, damp, dense
	1]										
												1
												-
		1		25								
				[دع								
					No Grout					1		
						+				1		_
										-		-
	▩	8	1.4	30-						-		-
		8 30 33								-		-
■.				-			1-11-11			}		_
				-			1444			}		-
				-			-			-		-
				35-						-		-
				-			144			}		_
										}		٦

	Collected		Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	uscs		Boring/Well Name TMW-1
Driven	Collected	Blows per 6*	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic	11805		D ' 63 (
Drive Broom	loo!	Blo Per	Hes Spa Rea (mg	-35-		l mx	USCS Log	Munsell Color	Project Name Boeing C-6
-	×××××					14.4.4			Project Number984006.00
-		11 38 40		40 -	No Grout		SM	7.5YR 5/3	Fine Silty SAND: brown, 80% sand, trace of fine mica, damp, dense
\mathbf{F}				45 -				į	
-	××××××××××××××××××××××××××××××××××××××	8 40 45	2.0	50 -	Blank Casing		SM	7.5YR 4/2	brown, 65% sand, minor clay, very dense
			ł	55 -				ļ	
		22		60 -	Bentonite Seal Sand Filter Screened Casing Depth to Water				
		43 50	3.9	05]	Depuir to Water		SM/ SP &CL	7.5YR 4/2	interbedded with fine sand, moist - water at 66 feet
		22 43 50 21 37 50	5.1	70	Bottom of Screen		&CI.		interbedded with fine sandy clay

		_			u O t	IOII LOG	Ť	,		Rennedy/Jenks Consultants
-	SAM	(PLE	s							Boring/Well Name TMW-1
L	pa c	ا چ		30 _	Depth		Graphic	11800	Muncall	Project Name Boeing C-6
Liven	Recove	Collect	Blows per 6"	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	I
1					-80)% ⊟ ()				Project Number
ľ						Bottom of Screen				1
Ī.						Bottom of Screen	11			-
										-
		İ	ļ							-
Ī			İ		85 -	Bottom of Well				1
	\Box	\top				Bottom or wen	9.4			
							1			-
							1			Boring Terminated at 86 feet.
					آ م		1			-
		- 1			90 -		1			-
						-				1
Ī					1	-				-
					-	-	1			1
					ا م	-	1			1
					95 -		1			1
					1	-				-
						-				-
										-
		1			100					-
•					100-					1
1						-				
						-	1			-
					1	-				
					105					
					105-					-
										-
]					-
										-
					110-]			[1
					110-]			[1
										[1
]			[
										[
					115-]
					113]
										1
]
]
					120-]
]
-										
•										
										1
					125-]
					123					

	NG L	OCATI	ON	uct	on rog		_			Ţ	ZV 2
DRILI	LING	Build COMP.	ANY			DRILLER	1002			Boring/Well Name TM	
DRILL	LING	West METH	Hazma	<u>t</u>		DRILL BIT (S	SIZE			3	eing C-6
				<u>llow S</u>	tem Auger	8" FROM		ro	FT	Project Number 984	TOTAL DEPTH
		2" PV	C Sch	edule 4	40		-1		62	Not Surveyed	87 ft.
		TED CA 2" PV	C Sch	edule 4	40, 0.010" slot	FROM 6	2	го	82 FT	DATE STARTED 6/28/98	DATE COMPLETED 6/28/98
	AND	TYPE (of FILTE star 2/1	R PACK		FROM	7	го	FT 87	DEPTH TO WATER 67.0 ft.	
SEAL					m Bentonite Chips	FROM	1	ro	FT	LOGGED BY	
GROU	JT _				rary Well)	FROM	7	го	57	J. Knight SAMPLING METHODS	WELL COMPLETION
		110 G	rout (1	ешро	rary wen			 .		2" Split Barrel Sampler, 140 lb. Hammer	STAND PIPE FT
Driven		Blows Ber 6*	- ^ iii 3	Depth (feet)	WELL CONSTRUCTION	ON	Graphic Log	USCS Log	Munsell Color	SOIL DESCRIPTION	AND DRILLING REMARKS
Driven	8	Blov	Head Space Reading (mg/L)				$\downarrow_{\!$		·	Concrete, 6"	
-				-				CL	2.5Y 4/4	Silty CLAY: olive brown, sligh	utly mojet stiff
XXX	9) L	2.31 7/7	Sity CEAT : Onve brown, single	iny moist, sum
										-	•
								↓ ↓		 	
***	38 88			5-			111111	ML	10YR 4/6	Clayey SILT: dark yellowish bi	rown, slightly moist, stiff
										[•
]				
				_							
	X	17	100	10			411111		2.5Y 4/4	olive brown, hard	
⋘	XXXX	17 26 31	100	1			4			_	
r							-			_	
-							-111111				
-				_			4			_	
				15-			-				,
-				-			-			-	
-				-			-			-	
-				-						-	
- - -	Q.	10					11111			<u> </u>	
₩		10 13 30	104	20-			1		2.5Y 5/4	decreasing clay, very stiff	•
POSK)	1	30					 				
							1				•
]]				•
				25-			_			_	
				"							
-					No Grout		411111			<u> </u>	
-						$\downarrow \downarrow \downarrow \downarrow \downarrow$	411111			-	
				-			-			}	
▓		12	190	30-			411111			}	
***	***	12 21 31					-			}	
١.				-			-			-	
				-			-			-	
 				-						-	
			'	35-			111111			}	
-				-							

	_			ucc.	ion Log				Kennedy/Jenks Consultants
	SAMP	LES							Boring/Well Name TMW-2
	ered ted		8°	Depth (feet)	WELL CONCEDUCATION	Graphic	USCS	Munsell	Project Name Boeing C-6
TVED	Recovered	Blows per 6	Head Space Reading (mg/L)	(feet) -35-	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Number984006.00
						Ш			Clayey SILT (continued)
				_					
**	X	5 15 17	183	40 -					some fine sand, and some thin sand lenses, very stiff
***	X ***	17							_
				-	-				-
-				-		ЩЩ			change noted by driller at 43'
F				-	No Grout				-
				45 -	-				-
				-	-				-
				-	-				-
				-	Blank Casing				-
***	×.	17		50 -					1
		17 25 32	354	30			SM	2.5Y 5/6	Silty SAND: light olive brown, fine, slightly moist, dense
					Bentonite Seal				[
				_					
				55 -	Bentonite Seal				
				-					_
1				-					_
-				-	Bentonite Seal				change noted by driller at 58'
-		10		-					-
		50		60 -			ML	2.5Y 5/6	Sandy SILT: light olive brown, fine, moist, hard
	8	18 50 50 50 50		-	Sand Filter			-· -	, g
***	22	00		-					-
					Screened Casing				increasing sand
***	×	20						i	•
		20 23 30	2025	65 -	Depth to Water				very maint hard come along the second
					2 - pair to 11 and	Щ.			- very moist, hard, some clayey lenses
	8	50					SM	2.5Y 4/3	water at 67' Silty SAND: olive brown, fine, wet, with lenses of clayey silt
]
				70 -]
									_
\blacksquare									_
\blacksquare				-					
				-					_
-				75-					-
1				-					-
									-
				1					-
				1					-
				80 -	Bottom of Screen			İ	-
					20.10m of Soleen				1
	Щ.					4:4:4:			

				uct	IOU LOG		7—	,	Renneuy/Jenks Consultants
	SAMP	LES	Γ						Boring/Well Name _TMW-2
٠	yered free		, g-,	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6
Driven	Reco	Blow per 6	Head Space Reading (mg/L)	-80 -	WELL CONSTRUCTION	Lòg	Log	Color	Project Number <u>984006.00</u>
				_					Silty CLAY (continued)
				_	Bottom of Screen]
-				-			1		-
				_					-
F I				85 -	[[[[]]]] - [[[]] - [[]] - [[]] - [[[]] - [[]] - [[[]] - [[]] - [[[]] - [[]] - [[[]] - [[]] - [[[]] - [[]] - [[-
-				-	Bottom of Well				-
						2222		·	
]			[
				90 -	-				Boring Terminated at 87 feet.
				-					_
				-	-				-
\blacksquare				-	-	1			-
				_	-				-
				95 -	-				1
	i								†
				_	_				
I				100-	-				
				-					-
-				-	-				-
-				٦	-				-
				10.5	-				-
				105					1
-				-	-				
				-	-				-
				-	-				-
	Ì			110-	-				
				1					†
]					[
]					[
				115-	-				ļ.
-				4	-				<u> </u>
			-	4	-				<u> </u>
				1	-				†
					-				†
				120	1				1
•]]				[
1				1					ļ 1
				-	-]
\blacksquare				125	-				}
				-					ļ <u>1</u>
	_								

	NG LO		***	иси	on Log			_			1	Jenks Consultants
		uildi	ng 2, P	atio 1	1 West	DRILLER	,				Boring/Well Name TM	
	V	est l	Hazma	t			Rube	n Lare	es			ing C-6
	LING N	ME '		low S	tem Auger (LAR)		IT (S) ! 8''					006.00
BLAN	K CAS	ING	C Sche			FROM	+0.	 5	o	62.5	ELEVATION Not Surveyed	TOTAL DEPTH 87 ft.
PERF	ORATE	D CA	SING		40, 0.010" slot	FROM	62.	TO	5	FT 82.5	DATE STARTED 7/21/98	DATE COMPLETED 7/21/98
SIZE A	AND T	YPE O	F FILTE	R PACK		FROM		T	5	FT	DEPTH TO WATER	1 11770_
SEAL			tar 2/1			FROM	60	TO	5	85.6 FT	67 ft.	
GROU	JT E	nvire	oplug N	<u> 1ediu</u>	m Bentonite Chips	FROM	60	TO)	58 FT	M. Balderman SAMPLING METHODS	WELL COMPLETION
	N	o Gr	out (To	empor	ary Well)						2" Split Barrel Sampler,	SURFACE HOUSING NONE STAND PIPE FT
	SAM	PLES				<u> </u>			1		140 lb. Hammer	
Driven			Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	ис <u> </u>		Graphic Log	USCS Log	Munsell Color	SOIL DESCRIPTION A	AND DRILLING REMARKS
									CL	2.5YR 3/1	Concrete, 8" -Silty CLAY: dark reddish gray,	minor fine sand, damp, medium stiff
		6 8 10		}							-	· •
		10		4			-				-	
	8 8 8 8	9	10.8	-}							-	
		20 20 22 28	9.7	5-			-			7.5YR 4/3	brown, stiff, mottled with light t	an CaCO3
XXXX	2000	28	<i>^</i>	1			-				}	
		ļ		1			-				-	
				1			-				-	
***	8	5	12.0	[,,					-		[
₩		5 9 20	13.9	10					ML	2.5Y 3/3	Fine Sandy SILT: dark olive bro- stiff	wn, 40% sand, minor clay, damp, very
		20					-					
											-	
		ļ		, -			-				-	
 				15			-				-	
┡							-				-	
							-				}	
	11			4			-				†	
****	8	25		أيرا			-	Щ	↓		 	
		25 35 40	6.2	20			-		CL	2.5Y 4/3	Fine Sandy CLAY: olive brown	, 30% sand, damp, stiff
		İ									_	
							_				-	
							-				-	
				25-			-				}	
-				-			-				-	
-				-	No Grout		-				}	
				-		$\downarrow \mid$	-				<u> </u>	
ÇOXX		12					-				 	
		22 45	10.4	30			-		SM	10YR 6/4	Fine Silty SAND: light yellowish	h brown, 70% sand, trace of fine mica,
noxx	AKES.						-		}		- aamp, dense	
											[
				35-	H							
				33			-				-	
							_				-	
		12 22 45	10.4	30-	No Grout	/	-		SM	10YR 6/4	Fine Silty SAND: light yellowish damp, dense	h brown, 70% sand, trace of fine n

				Hoti	uct	ion Log		-		Kennedy/Jenks Consultants
	SAM	PLE	:S							Boring/Well Name TMW-3
	· 1	ڇ		80	Denth		Gat-		3 4*	Project Name Boeing C-6
uriven	Recove	Coffee	Blows per 6°	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Number 984006.00
	\top	1			-35-		1934			Fine Silty SAND (continued)
-		*	12 24 30	17.5	 40 		s	SM	10YR 6/2	light brownish gray, 75% sand, damp, dense
-					45 -	No Grout				-
		88	24 21 30	6.3	50 - - - - - 55 -	Blank Casing	S	М	10YR 5/4	yellowish brown, 70% sand, trace of fine mica, damp, dense
					60 -	Bentonite Seal Sand Filter Screened Casing				
		8	12 28 50 14 25 50	7.2	65 -	Depth to Water	1.1.1 C	CL	 5GY 6/1	Silty CLAY: greenish gray, minor fine sand, moist, very stiff water at 67'
					70 -					sandy
t					75 -					
-					80 -					

Wen Consti	uct	IOII LOG				Kennedy/Jenks Consultants
SAMPLES						Boring/Well Name TMW-3
2 2	Denth		Cbis	11866	Montell	Project Name Boeing C-6
Recovered Collected Blows per 6* Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	-
1	+80 -					Project Number 984006.00 Silty CLAY (continued)
_	_	Bottom of Screen				
	اِ ا					
-	-					-
-	85 -	Bottom of Well				-
	-	-				-
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	-					-
	90 -					Boring Terminated at 87 feet.
] _	-				
	-	-				
-	-	-				-
	-	.				-
	95 -	-				•
	-	-			i	
]
	100-					
	-	-				-
	-	-				-
-	-	-				-
	-	-				•
	105-	-	1			
		-				-
-	-	-				-
-	110-	-	}			-
	-	-	1			-
		-	1			†
		-				1
	115-]
	113	.				_
	-	-				-
	-					-
	-	-				-
	120-	-	1			•
	-]			1
	_					
	125-	.]			-
	-	.	-			-
	<u>L</u>			l		

			OCATI			ion Log						1xcmrcuy/	Jenks Consultants
L		1		ing 2, I	Patio 1	1 East	DRILLER					Boring/Well Name TM	W-4
		. 1	West	Hazma	ıt		DRILLER DRILL BI		<u>Lar</u> e	S			ng C-6
אָני"	ULLI			OD (S)	llow S	Stem Auger (LAR)		T (S) SIZI B"	3			1 *	006.00
BL	ANK	CA	SING	/C Sch			FROM		TC)	FT 61	ELEVATION Not Surveyed	TOTAL DEPTH
PE	RFO	RAT	ED CA	SING			FROM	+1	TC)	61 FT	DATE STARTED	86 ft. DATE COMPLETED
SIZ	ZE A	ND 1	TYPE (OF FILTE	R PACK	_	FROM	60	TC)	80 FT	6/30/98 DEPTH TO WATER	6/30/98
SE	AL	<u> </u>	Lone	star 2/1	2 San	<u>d</u>	FROM	58	TC)	86 FT	66.0 ft.	
GR	OUT		Envir	oplug	Mediu	m Bentonite Chips	FROM	55.5	TC		58 FT	M. Balderman/ J. Kn SAMPLING METHODS	ight
			No G	rout (T	`empo	rary Well)	TROM		10	, 	F1		WELL COMPLETION SURFACE HOUSING NONE
												2" Split Barrel Sampler, 140 lb. Hammer	STAND PIPE FT
Driven	Recovered	ارد	Blows Per 6"	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	ри	Gr	aphic .og	USCS Log	Munsell Color	SOIL DESCRIPTION A	ND DRILLING REMARKS
								\top	\mathcal{H}			Concrete, 4"	
**			20	1.1									-
**			20 30 30							CL	7.5YR 4/4	Silty CLAY: brown, minor fine s	and, damp, stiff
ŀ					[_								- -
**	₩		30 50	0.6	5-				H	<u> </u>			
Ė,			30		-					CL	2.5Y 4/4	Fine Sandy CLAY: olive brown,	30% tine sand, dry, hard
ŀ								1-88				-	-
ŀ					-			1-88				-	-
Ŀ					-							-	-
***	燚		17 20	0.7	10-			1-10		CL	10YR 5/4	Fine Sandy CLAY: yellowish bro	own 35% fine sand damn stiff
**	***	***	30								10110574	Time bailey CLAT, yellowish bro	
ſ												-	-
ŀ					-							-	-
ŀ					-							-	-
Ì					15-							†	-
Ī												<u> </u>	-
												Ī	-
													-
**	XX				20-					\vdash \dashv	·— — —	[
×	×	**		0.9	["1					ML	10YR 5/4	Clayey SILT: yellowish brown, n	ninor fine sand, damp, stiff
												_	-
													_ _
ŀ												_	_
ŀ					25-			4				 -	-
-					-			-				-	-
H					-	No Grout		-				-	-
ł					-		+	-				-	=
					-							-	-
	▩	XX	18 32 50	0.9	30-					ML	10YR 5/3	Fine Sandy SILT with Clay: brow	m. 35% fine sand, damp, stiff
**	m		50		-								and the same and the same and
٠.					-							<u> </u>	+
1												<u> </u>	_
ľ												<u> </u>	<u>-</u>
					35-							<u> </u>	-
Ī												<u> </u>	-
L					أحا						-		-

ven	paravoo	lected	 6	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munseli Color	Project Name Boeing C-6
1	5	కి	ĕ ≅.	# 25 m	-35-		 		-	Project Number 984006.00 Fine Sandy SILT with Clay (continued)
-		***	22 50	1.0	40 -	No Grout		SM	10YR 4/3	Fine Silty SAND: brown, 70% fine sand, trace of fine mica, damp, dense
		***	20 50	0	45 -	Blank Casing			0.53444	
			30	V	55 -	Bentonite Seal		ML	2.5Y 4/4	Fine Sandy SILT with Clay: olive brown, micaceous, moist, hard
					4	Bentonite Seal Sand Filter Screened Casing				
-			18 45 50	17.1	65 - - - 70 -	Depth to Water		SM	2.5Y 4/3	Silty SAND: olive brown, fine, wet, very dense, with lenses of clayey silt water at 66'
					75 -	Bottom of Screen				
						-				-

	SAMI				Ion Log				TMXV 4
									Boring/Well Name TMW-4
Driven	overed	s	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6
É	§ 8	18 F	Hea Spar Rea (mg	-80	[35:35:56:34]	F. F. P.			Project Number 984006.00 Silty SAND (continued)
1				-					Silty SAND (continued)
				-					-
				-					-
l-				-					-
$ \mathbf{l} $				85 -					-
		+			Bottom of Well		\vdash		
\mathbf{F}				-	-				-
┢╽				-	-				Boring Terminated at 86 feet.
				-	-				-
				90 -					†
				-	-				- -
				-	-				1
				-					1
				95 -					
				ר כע					[·
]					[
				100-					
				_					_
1				-	-				_
				۱ ۹	-				-
				-	-				-
-				105-	-				-
F				_	-				-
-				-	-				-
				-	-				
				-	-				-
				110-	-				†
				-	-				†
				-	-				†
									1
					-				1
				115-	-				· 1
									[
									1
]
				120-					<u> </u>
									_
1									_
•									-
				-	-				-
┠│				125-	-				-
 				-					-

	NG LC	CATI	NC		on Lug			-			W-5
DRILI	ING (COMP	ANY		1 West	DRILLER				Boring/Well Name TM	
DRILI	ING I	METH	Hazma OD (S)			DRILL BIT (S	ben Lare) SIZE	s		004	one on
BLAN			75, Ho	llow S	tem Auger (LAR)	FROM	TC		FT	Project Number 984 ELEVATION	TOTAL DEPTH
PERFO	2	" PV	C Scho	edule 4	40	1	·1		61.3	Not Surveyed DATE STARTED	86 ft.
	2	" PV	C Sch	dule 4	40, 0.010" slot	61	.3		81.3	7/2/98	DATE COMPLETED 7/2/98
SIZE A			of FILTE star 2/1			FROM 58	тс 3 .9		FT 86	DEPTH TO WATER 65.0 ft.	
SEAL					m Bentonite Chips	FROM	то 5.2)	FT 58.9	LOGGED BY	
GROU	T					FROM	TC	·	58.9 FT	M. Balderman SAMPLING METHODS	WELL COMPLETION
		10 G	out (1	empor	rary Well)					2" Split Barrel Sampler, 140 lb. Hammer	STAND PIPE FT
1 2		PLES		Depth (feet)	WELL CONSTRUCTION		Graphic	USCS	Munsell		AND DRU I BIC DEMARKS
Driven Recovered	Collecte	Blows per 6"	itead Space Reading (mg/L)	(feet)	WELL CONSTRUCTION	NO.	Graphic Log	USCS Log	Color		AND DRILLING REMARKS
				_			<i>MM</i>			Concrete, 6"	
***		7	3.2					CL	5YR 4/2	-Silty CLAY: dark reddish oray	minor fine sand, damp, medium stiff
		10 14						-		Series Series Blay,	
										-	,
		25 50	7.9	5					7.5VD 4/2	Fine Sends CLAVII 2004	
-	1	50						CL	7.5YR 4/3	Fine Sandy CLAY: brown, 30%	э ин с sand, damp, nard -
										-	-
										_	
									. _	<u> </u>	
		12 17	22.2	10-				SC/ CL	7.5YR 5/2	Fine Sandy CLAY/ Clayey SAN	D: brown, 50% fine sand, damp dense
****	2	17 20						-		}	-
1		i	į	-						}	-
-				-						}	7
-										 	-
				15-						<u> </u>	-
			1	-						†	-
											-
										-	-
- 	8								- -	├	
₩		20 50	28.0	20-				CL	7.5YR 5/2	Fine Sandy CLAY: brown, 35%	fine sand, damp, hard
											-
											-
											-
	11]						[-
				25							-
					No Grout						- -
]							<u>.</u> -
				$[\]$		T					
	8	20	00	30-			min	-		 	
	XXX	20 25 45	90	["				SP	5GY 6/1 10YR 5/6	Fine SAND with minor Silt: mo trace of fine mica, damp, dense	ottled gray and yellowish brown,
1										- and the same of	-
<u>.</u>									i	_	-
							ļ			_	-
				35-						_	
										-	-
.										ļ	
			<u> </u>				1	L		<u> </u>	

Ë		_		11511	uct	ion Log		_		Kennedy/Jenks Consultants
	SAN	MPLI	ES							Boring/Well Name _TMW-5
	par	اچ		D	Depth	l	Granhie	Ilece	Muncett	Project Name Boeing C-6
Driven	Recove	Collect	Blows per 6"	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Number 984006.00
1					-35-					Fine SAND with Minor Silt (continued)
				i]			
		ĺ]:::::			
***	XX .		23 50	112	40 -				10YR 7/6	yellow
- ***	***	***	50							_
					_					
-					-	No Grout				-
-					-					-
F					45 -		-			-
$\ \cdot\ $					-					-
					-		-			-
- XXX	XX		20	160	-	Blank Casing	XXX	SC	7 5YR 5/4	
***	ቖ	₩	20 50	100	50 -					Fine Clayey SAND: brown, increasing clay
								CL	2.5Y 5/3	- Silty CLAY: light olive brown, minor fine sand, damp, hard
										1
	١				55 ~					
1					35					
1					_	喜喜				_
					_	Bentonite Seal				
	Ì				-					-
H					60 -	Sand Filter				-
H					-					-
					-	Screened Casing				-
					-					-
- XXX			20			Depth to Water			. — — —	
	₩	燹	20 50 5 20 38	250	65 -			SM	2.5Y 5/3	Fine Silty SAND: light olive brown, 80% sand, trace of fine mica, wet,
	Ť		20 38							- dense water at 65'
][[[[
				i]
					70 -					
					′ ,					
					_					
					-					
							1111			
					75 -					
+					-					-
					-					-
					-					-
					-					-
					80 -	Bottom of Screen				†
					-					†
					-					

			12001		IOU LOG	T	-		Kennedy/Jenks Consultants
	SAM	PLES	<u> </u>						Boring/Well Name TMW-5
s	overed	ν. Ε	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6
univen	8	Blow Per 6	Spac Read (mg/	80 -		Log	Log	Color	Project Number 984006.00 Fine Silty SAND (continued)
1			1	-	Bottom of Screen				Fine Silty SAND (continued)
									_
				-					-
-				-	(1000) (1000) (1000)				-
┠				85 -	<u> (2,000)</u> -				-
	+	+			Bottom of Well	1333			
	1			-	-				-
	ĺ			-	-				Boring Terminated at 86 feet.
				90 -	-				1
	1		•]
				-	-				-
				95 -	-				. 4
-					-				-
				-	-				-
				-	-				-
	-			-	-				-
		į.		100-	-				1
4				-	-				1
					-				
	-		 						
				105-	-				_
-				_	-				-
-				-	-				-
				-					-
F				-	-				-
				110-	-				†
					-			i	1
					-			,	1
									[
				115-					
					-			!	•
				-	-				-
				-	.				-
-				-	-				
				120-	-				-
1				-	-				-
				-	-				-
					-				-
					-				-
				125					1
	_								
ليبت	-	سعاد			<u> </u>				t

BRIDGING COMPANY BRIDGING COMPANY Well Rament CME 75, Hellow Stem Auger (LAR) CME 75, Hellow Stem Auger (LAR) REAL TYPE C Schedule 40 PROM 10 REAL TO 61.2 REAL TO 81.2 REAL TO 81.2 REAL AND TO 87 TO 87	Sultallt3	enks Consulta	rzenneuy/J					lug	ion ros	ucı		_	_	_	
Note Hazmat Subtent Lores Project Name Society C-6		V-6	Boring/Well Name TMW						1 East	atio 3	ing 2, F	<u>Build</u>	E		L
SPAIL IN METHOD (S)					_	hon I am		D			ANY	COMP	ING (RILL	DI
TO FT SLEVATION TO SLEVATION		_	00.400		s) SIZE	DRILL BIT (S)				OD (S)	METH	ING	RILL	DI
PERFORMED CASING PROM 51.2 S1.2 71.198 DATE COMPLETED 2° PVC Schedule 40, 0.010° slot S1.2 S1.2 71.198 DATE COMPLETED T71.198 S1.2		TOTAL DEPTH	ELEVATION		-		FROM	er (LAR)				SING	K CA	LANI	d BI
SEC AND TYPE OF FILLER ACK FROM S1, 1 To FT DEFTH TO WATER	86 ft.			61.2 FT				F)	40	edule 4				ERFO	PE
Lonestar 2/12 Sand	7/1/98	7/1	7/1/98 DEPTH TO WATER	81.2 FT		.2 TO	61 FROM	" slot	40, 0.010" slo	edule 4	C Sch	YPE	ND 1	ŻE A	SĽ
Enviroplus Medium Bentonite Chips ROUT No Grout (Temporary Well) Substitution Substitutio			65.5 ft.	86		9.1	59.								L
No Grout (Temporary Well) 2" Split Barrel Sampler, 140 lb. Hammer 2" Split Barrel Sampler, 140 lb. Hammer Soll DESCRIPTION AND DRILLING REMARKS 100 lb. 1			M. Balderman	59.1		5.5	56.	nite Chips	m Bentonite (<u>Mediu</u>	oplug !	Envir	<u>_</u>		L
Sample Standbries Standbr		·		FT		то	ROM		rary Well)	empoi	rout (T	io G		ROU	GI
WELL CONSTRUCTION Graphic Logs USCS Golder SOIL DESCRIPTION AND DRILLING REMA Color Concrete, 6" CL. 7.5YR 3/2 Fine Sandy CLAY: dark brown, 30% fine sand, wet, me The Clayer SAND: brown, 60% fine sand, moist, dense ML. 10YR 5/3 Clayer SILT: brown, 20% fine sand, moist, stiff SC. 10YR 4/4 Fine Clayer SAND: dark yellowish brown, 55% sand, 6 SC. 10YR 4/4 Fine Clayer SAND: dark yellowish brown, 55% sand, 6 SC. 10YR 4/4 Fine Clayer SAND: dark yellowish brown, 55% sand, 6 SC. 10YR 4/4 Fine Clayer SAND: dark yellowish brown, 55% sand, 6 SC. 10YR 4/4 Fine Clayer SAND: dark yellowish brown, 55% sand, 6	FT	STAND PIPE	12" Split Barrel Sampler, 140 lb. Hammer												
Concrete, 6" Concrete, 6" Fine Sandy CLAY: dark brown, 30% fine sand, wet, me 722 2900 5 SC 7.5YR 4/4 Fine Clayey SAND: brown, 60% fine sand, moist, dense ML 10YR 5/3 Clayey SILT: brown, 20% fine sand, moist, stiff 15- 15- 15- 16- 17- 18- 18- 19- 19- 19- 19- 10- 10- 10- 10	EMARKS	D DRILLING REMARK	SOIL DESCRIPTION AND	Munsell Color	USCS Log	Graphic Log	,	L CONSTRUCTION	WELL CON	Depth (feet)	lead pace cading mg/L)			ecovered	hiven
3			Concrete, 6"		_	KKKK	\Box				INK.	<u> </u>	ľ	3 2	ľ
7 22 24 2900 5 - 20 20 2	, medium stiff -)% fine sand, wet, mediun	Fine Sandy CLAY: dark brown, 30	7.5YR 3/2	CL		-			-	280	4			***
11 24 30 0 10 10 10 10 10 10 10 10 10 10 10 10	_		[
11 24 30 10 10 10 10 10 10 10 10 10 10 10 10 10			<u> </u>							[2900	7			×
24 30 0 10- 15- 15- 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d	ense -	ine sand, moist, dense	Fine Clayey SAND: brown, 60% fi	7.5YR 4/4	SC		.		!			22 24	₩.		8
24 30 0 10- 15- 15- 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, 6	-		}												ŀ
24 30 0 10- 15- 15- 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d	_		<u> </u>												1
24 30 0 10- 15- 15- 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d			<u> </u>	-	_		-			-		11		~~~	<u>.</u>
15- 15- 17 0 20- 17 0 20- 18 SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d	_	ıd, moist, stiff	Clayey SILT: brown, 20% fine sand	10YR 5/3	ML	-	-			10-	0	24		▓	8
12 15 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, of	_					-	-					50	***	XXXX	~0
12 15 17 0 20- SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, of	-		-			7]]]]]]]									1
12 15 17 0 20 SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d	7		-			711111111			į	1					
12 15 17 0 20 SC 10YR 4/4 Fine Clayey SAND: dark yellowish brown, 55% sand, d										15]					
							.			15					
	-		_				-]				Ì	-
	- -		-			4	.								ŀ
	<u>-</u>		-			4]]]]]]]	.					12]		E
		h brown, 55% sand, darm	Fine Clayey SAND: dark vellowish	10YR 4/4	sc	W	.			20-	0	15 15		₩	
	_,, conso _	comp	- Singley States, agin, you wish				-			-		17	2	\$\$\$\$	×
	_		}		!		-								ŀ
	_		 				-			-					ŀ
	4		}		,		-								l
eriti i i de la compania del compania de la compania del compania de la compania del compania de la compania del compania de la compania del compania de	-		<u> </u>				.			25					İ
No Grout _	-						$ \ \ \ ^{-}$	ut -	No Grout						
	_					N/A									
						WA		7							
31 4.3 30-			<u> </u>		_+	K/A	.			30-	4.2	31			X
31 33 4.3 30 50 Fine Clayey/Silty SAND: brown, 70% sand, trace of fine dense	fine mica, damp,	70% sand, trace of fine mi	Fine Clayey/Silty SAND: brown, 76 dense	7.5YR 5/3	SC SM		.				4.5	33 50	XX	₩	**
	-		_			MI	.								
	-		}-				.								_
■			-			NII	.								ŀ
-	-		}				.			35					ŀ
	-		}				-								ŀ
	-		<u> </u>												Ł

		_				ion Log	_			Rennedy/Jenks Consultants
	SAN	AP LE	<u>:s</u>							Boring/Well Name TMW-6
	ered	peq		59 _	Depth (feet)	WELL CONSTRUCTION	Graphic	USCS	Munsell	Project Name Boeing C-6
- wen	Recov	Collect	Blows per 6	flead Space Reading (mg/L)	(feet) -35-	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Number 984006.00
-	***	**	11 14 22	2.9	40 -	No Grout		SM	10YR 5/6	Fine Clayey/Silty SAND (continued) Fine Silty SAND: yellowish brown, 75% fine sand, trace of fine mica, damp, dense
					45 -					-
-	***	**	23 50	1.4	50 -	Blank Casing		SM	10YR 5/4	yellowish brown
t t					55 -	Bentonite Seal	- 1			
					60 -	Bentonite Seal Sand Filter Screened Casing				-
- - - - -	**	XX	22 50 25 50	0	65 -	Depth to Water	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ML SM	2.5 <u>Y</u> .5 <u>7</u> 0. 3 5Y 4/2	Clayey SILT: grayish brown, 30% fine sand, moist, hard, grading to gray sand at 65' - Fine Silty SAND: olive gray, 85% sand, trace of fine mica, wet, dense water at 65.5'
					70 -					-
					75 -					
					80 -	Bottom of Screen				

			JIISTI	T T	ion rog	_				Renneuy/Jenks Consultants
-	SAM	PLES	T	-						Boring/Well Name TMW-6
	gud.	P	, po_	Depth (feet)	WELL CONSTRUCTION	- {	Graphic	uscs	Munsell	Project Name Boeing C-6
Driven	Recov	Blows	Head Space Reading (mg/L)	(feet)	WELL CONSTRUCTION		Graphic Log	USCS Log	Munsell Color	Project Number <u>984006.00</u>
1				-80 -						Fine Silty SAND (continued)
L			ļ		Bottom of Screen					
L				_						
ŀ				85 -			1111			_
 -		+	ļ		Bottom of Well					
ł										-
ŀ				-		$ \cdot $				Boring Terminated at 86 feet.
ŀ				-		-				-
ŀ				90 -		\dashv				
t			}	-		-				-
ŀ				-						-
t				-		-				-
İ				0.5						1
				95 -		11				1
L										
L				_						_
\				100-						_
				_						-
1				-						-
ŀ				-		\mathbb{H}				-
1				-]-			'	-
1				105-		$\ \cdot\ $			i	-
-				-		\mathbb{H}				-
ŀ				-		-				-
I				-						1
										1
				110-		1				1
				[]		$\lfloor \rfloor$				[1
]						<u>]</u>
]
ŀ				115-						
										<u>.</u>
-				-		-				ļ.
-				-		$\left \cdot \right $				ļ.
-				-		$\left \cdot \right $				·
				120-		\mathbb{H}				<u> </u>
F				-		-				-
ا د				-		-				
				-		-				
				-						4
				125-						1
										†
سط	4	ا	1-			4				

			ucı	ion Log					Kennedy/	Jenks Consultants
BORING I			South	east Corner of Buildin	σ1				Boring/Well Name _TM	W-7
DRILLING	G COME	ANY		Corner of Dungil	DRILLER					ing C-6
PRILLING	3 METH	Hazma IOD (S)			DRILL BIT		es		1	_
BLANK C	CME ASING	75, Ho	llow S	Stem Auger (LAR)	FROM	··)	FT	Project Number 984 ELEVATION	006.00 TOTAL DEPTH
PERFORA		C Sch	edule	40	FROM	+1		64	Not Surveyed	89.5 ft.
	2" P	C Sch	edule	40, 0.010" slot		64		FT 84	DATE STARTED 6/29/98	DATE COMPLETED 6/29/98
SIZE AND		OF FILTE star 2/1			FROM	62)	FT 89.5	DEPTH TO WATER 66 ft.	
SEAL					FROM	TO)	FT	LOGGED BY	
GROUT	Envi	oplug l	Mediu	m Bentonite Chips	FROM	_ 56)	62	M. Baiderman SAMPLING METHODS	WELL COMPLETION
	No G	rout (T	empo	rary Well)					2" Split Barrel Sampler,	☐ SURFACE HOUSING NONE
									140 lb. Hammer	☐ STAND PIPE FT
Driven Recovered	Blows per 6.	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	ON .	Graphic Log	USCS Log	Munsell Color	SOIL DESCRIPTION A	AND DRILLING REMARKS
									Asphalt, 3"	
	5 5	2.3	-				CL	7.5YR 4/2	Silty CLAY: brown, minor fine:	sand damn soft
-	\$ 6		-				- I			-
									_	
	12	0.7	5-				<u> </u>			<u>-</u> <u>-</u>
-	\$ 50		_ - ا				ML	7.5YR 4/4	Clayey SILT: brown, 20% fine s	and, damp, stiff
-			-			-				
			-						-	_
-			-						-	
	12 30	0.4	10-					2 532 572		<u>-</u>
-	42		-				CL	2.5Y 5/3	Silty CLAY: light olive brown, r -stiff	minor fine sand and carbonate, damp,
			_						-	-
			_						-	
			_						-	-
			15-			<i>-</i>			-	
-			_						-	
			-						-	4
			-						-	
									-	
	13	0.5	20-				ML	2.5Y 4/3		
	10 15	0.5	-			-	IVIL	2.3 ¥ 4/3	Clayey SILT: Olive brown, mino -carbonate, damp, medium stiff	r fine sand, trace of fine mica and
			-			-			-	
-			-			-			-	-
			-			-			-	
			25-			-			-	~
			-			-			-	-
				No Grout						-
			-		T	-				-
			-			-			-	-
	14 12 20	1.3	30-				ML	2.5Y 5/4	Clavey SII To light olive brown	minor fine sand, carbonate nodules to
22222	20		-			-		2.31 3/7	-3/8", damp, stiff	
-			-			-			-	-
			-			-			-	-
			-			-			_	-
			35-			-			-	4
			-			-			-	-
									-	-
				<u> </u>						

	-					lon Log	T			Kennedy/Jenks Consultants
	SAM	П								Boring/Well Name TMW-7
ven	overed	ected	ş.,	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6
Driven	آ	3	Be g	Hea Spar Rea (mg	-35-		111111			Project Number 984006.00 Clayey SILT (continued)
-	***	**	12 18 31	1.7	40 - -					Clayey SIL1 (continued)
-					45 - - -	No Grout				
-		88	20 50	1.4	-	Blank Casing		SM	10YR 6/4	Silty SAND: light yellowish brown, 70% fine sand, damp, dense
•			12		55 -	Bentonite Seal				
		Ø	12 17 19 11 17 21		-	Depth to Water Sand Filter Screened Casing		SM SM ML	2.5Y 4/2 2.5Y 4/3	Silty SAND: dark grayish brown, 75% fine sand, trace of fine mica, wet dense, with a clayey silt lense from 65 to 65.5' Fine Sandy SILT/Silty SAND: olive brown, laminated with clayey silt, wet, dense Water at 66'
					70 -					
					75 -					
					80 -					

	_				IOII TOB	_	_		Renneuy/Jenks Consultants
	ŞAMF	LES							Boring/Well Name TMW-7
	필 .			Denth		Granhie	LISCS	Muncell	Project Name Boeing C-6
ca	Recove	Blows per 6"	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Number
1	1			80 -					Fine Sandy SILT/ Silty SAND (continued)
									-
	1			1	Bottom of Screen	\mathbb{H}			
				85 -					
					(*************************************				_
			i						-
-									-
					Bottom of Well				-
F	†			90 -	- Doubling went	111111111			-
				-	-	1			Boring Terminated at 89.5 feet.
-					-				- Horizing Terminated at 69.5 feet.
					-	İ	İ		†
					-	1			-
				95 -	•	1			1
				1					1
]			
				100-]	Ì		
				"	-				-
1									-
				-	-	-			-
-				-	-	ł			-
1				105-	-	-			-
\mathbf{l}				-		-			-
-									-
F						1			1
				-					1
				110-		1			<u> </u>
]			[
]
]
				115-					<u>.</u>
					-	4	}		-
			:	-		-			-
				-	.	-			-
				-		1			-
▐				120-		-			ł
				-		1			1
_						1			†
						1			†
				1,2,1]			[
				125					[

				act.	ion Log	Rennedy/Jenks Consultants						
BORING LOCATION Outside and East of Building 1											Boring/Well Name TMW-8	
DRILLING COMPANY West Hazmat							DRILLER Ruben Lares				Project Name Boeing C-6	
ORILLING METHOD (S) CME 75, Hollow Stem Auger							DRILL BIT (S) SIZE 8"				}	006.00
BLANK CASING 2" PVC Schedule 40								T	0	FT 61	ELEVATION Not Surveyed	TOTAL DEPTH
PERFORATED CASING							+1	T	0	61 FT	DATE STARTED	86 ft. DATE COMPLETED
2" PVC Schedule 40, 0.010" slot SIZE AND TYPE OF FILTER PACK							61	T	0	81 FT	6/29/98 DEPTH TO WATER	6/29/98
Lonestar 2/12 Sand 59 85.5									66.4 ft.			
Enviroplug Medium Bentonite Chips 55.8								8		59	M. Balderman SAMPLING METHODS	
GROUT No Grout (Temporary Well)						FROM TO FT			0	FT		WELL COMPLETION SURFACE HOUSING NONE
											2" Split Barrel Sampler, 140 lb. Hammer	STAND PIPE FT
, cu	밀밀	4PLES % 5₀	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	ON]	Graphic Log	USCS Log	Munseli Color	SOIL DESCRIPTION A	ND DRILLING REMARKS
Driven	S S	Blows per 6*	Hea Spa Rea (mg			$\overline{}$					Asphalt, 3"	
XX	X	6		-			-					•
	****	30 32		_			-		CL	7.5YR 4/3	Silty CLAY with minor Fine San partings, damp, stiff	d: brown, local fine to coarse sand
				-			-				Perungs, damp, sum	
				-			-		3		-	•
		8 18		5			-				<u> </u>	•
		40					-				-	-
				1							-	•
				-			-				-	•
XXX	XX	27 50		, 1							-	•
	****	50		10-			~		CL	7.5YR 4/4	brown, hard	•
												•
												•
							$ \]$					•
				15-								
				13								
											_	
											_	
				_							<u>-</u>	
	8	8		20-						2 637 4/2	Cl CV T. 11	·
***	₩ ₩	8 20 23		•					ML	2.5Y 4/3	Clayey SILT: olive brown, 20% t	nne sand, damp, stiff
				_			-				_	
				-			-				-	
				_			-				-	
-				25-			-				-	
-				-			-				-	
-				-	No Grout	\perp	-				-	-
-				-			-				<u> </u>	
				-			-					-
	X	7 14		30-			-				scattered carbonate nodules to 1/4	4"
XXX	∞	30		-			-					
₹,							-				_	-
				-			-					-
				-			-					-
				35-			-				-	•
							-				-	•
				-							<u>-</u>	

			_			lon Log				Renneuy/Jenks Consultants
	SAM	Т								Boring/Well Name TMW-8
ven	passon	llected	ا ئ <u>ة</u>	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	Project Name Boeing C-6
4	ž į	ਤੋਂ _ਹ	S E	Spa (mg	-35-		 			Project Number984006.00 Sandy SILT (continued)
-		₩.	12 20 30		40 -	No Grout		ML	2.5Y 5/3	Fine Sandy SILT: light olive brown, minor clay, 30% fine sand, damp, dense
					45 -					
- - -		₩.	13 22 33		50 -	Blank Casing -		SM	2.5Y 5/4	Fine Silty SAND: light olive brown, 70% sand, trace of fine mica, damp,
					- - 55 -	Bentonite Seal				
•					60 -	Bentonite Seal Sand Filter Screened Casing				- - - - - -
-		8	15 34 45 18 23 50		-	Depth to Water			2.5Y 4/4	olive brown, moist to wet - water at 66' interbedded clayey silt from 66.5 to 67.5, then silty sand as above
					70 -					
					80 -	Bottom of Screen				

					IOI LOG				Tennedy/Jenus Consultants
	SAM	LES							Boring/Well Name TMW-8
	고 :	,		Denth		Graphic	11806	Muncell	Project Name Boeing C-6
Driven	Secove.	3lows	Head Space Reading (mg/L)	Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munsell Color	
				80 -	id=88	rri			Project Number 984006.00 Fine Silty SAND (continued)
ŀ	ı			-	-				├
				-	Bottom of Screen				-
		}			(3.3.3.3.4)			ı	ļ
				-					ļ
				85 -	Bottom of Well				<u> </u>
	\forall				Bottom of Well	1.1.1.			
				ן ו					1
									Boring Terminated at 85.5 feet.
	İ			}]			
	l				-				1
				90 -					1
				-	-				1
-				-	-	1			†
 	1		[-	-	1			├ -
				-	-	-			}
				95 -	-	-			}
-	-			-	-	1			-
	1] _	-	1].
				_					
									_
	ł			100					
•				100-		1			1
4	ļ			-	-	1			1
				-	-	1			†
				-	-	1	'		<u>†</u>
				_	-	1			}-
-				105-	-	1			-
-				-	-	-			ļ
				-].	1			ļ.
				_	.	1			ļ
				_	.				<u>_</u>
			}	110-	.				<u>,</u>
]			<u> </u>
									1
]			1
						1			Ţ 1
				-		1			† 1
	ŀ			115-	-	1			† 1
				-	-	1			† 1
				-	-	1			
				-	-	1			} 1
╟				-	.	1			
				120-	.	4			1
]		1		:	
•]			1
1]			
							'		1
				l. ⁻]			1
				125-		1			1
t				-		1			1
<u> </u>			<u> </u>						<u> </u>

		LO	CATIO	N		IOH LOG						<u></u>	Denks Consultants		
DRII	LIN		uildi OMP	ng 1 ANY			DRILLE	R				Boring/Well Name TM			
		W	est]	Hazma OD (S)	<u>t</u>		DRILL B	Rub	en Lar Size	es		Project Name Boeing C-6			
BLA		C	ME		llow S	tem Auger		8"		0	FT	Project Number 9840	TOTAL DEPTH		
		<u>2'</u>	' PV	C Sche	edule 4	40	<u> </u>	+1			61	Not Surveyed	86 ft.		
PERI	FOR.			SING 'C Sche	edule 4	40, 0.010" slot	FROM	61		0	FT 81	DATE COMPLETED 6/30/98 6/30/98			
SIZE	AN	D T	YPE C	F FILTE	R PACK		FROM	59	T	0	FT	DEPTH TO WATER			
SEA	L						FROM TO FT			0		66 ft.			
GRO	UT					m Bentonite Chips	FROM	56.	.5 T	0	59 FT	J. Knight SAMPLING METHODS	WELL COMPLETION		
_		N	o Gi	out (T	empo	rary Well)						2" Split Barrel Sampler,	SURFACE HOUSING NONE STAND PIPE STAND FIF		
_	5	AMI	LES				<u> </u>					140 lb. Hammer			
Driven		_		ftead Space Reading (mg/L.)	Depth (feet)	WELL CONSTRUCTI	УМ]	Graphic Log	USCS Log	Munsell Color		ND DRILLING REMARKS		
							11	_		Î		Concrete, 8"			
▓	❈	X	12 14 21	52.0				_		ML	10YR 4/6	Clayey SILT: dark yellowish brovery stiff	wn, trace of fine sand, slightly moist,		
-	XX		41					-							
-								-				}			
▓	X	XX	12 22 40	86.0	5-			-		CL	10YR 3/6	Silty CLAY: dark vellowish brow	vn, some fine sandy lenses, slightly		
***	X		40		-			-		7	101110/0	-moist, hard			
-					-							}	-		
-					-			-				†	•		
-	X		27		-			-			1000 5/4	vallowish braum de Land	•		
▓	❈	ফা	30 30	85.7	10-			-			10YR 5/4	yellowish brown, dry, hard	•		
××	Ä				-			-					•		
					-			-					•		
$[\]$								-					•		
					1.5										
					15-										
					_			_				-			
-					_			.				1			
					-			-				-			
▓	▓.	8	12	40.0	20-			-) M	2.5Y 5/4	Clayer SILT. light clim have	race of fine and day was stiff		
⋘	***	XX	12 17 23	48.2	-			-		ML	2.5 1 5/4	Clayey SILT: light olive brown,	hace of time sand, dry, very still		
1					-			-	$\ \ \ $			}			
-					-			-	$\ \ \ $			}			
-					-			-				}			
					25-			-	$\ \ \ $			†			
-					7			-	$\ \ \ $			<u> </u>			
					_	No Grout	1	-				†			
					-			-	1			<u> </u>			
- XXV	8		21					-							
₩	፠	8	21 28 50	51.4	30-			-	1	ML	2.5Y 5/6	Sandy SILT: light olive brown, f	ine sand, sligtly moist, hard		
			JU]				•		
]				•		
][[[[[$\ $					
					35-										
					33]]]]]]						
						<u> </u>		\Box	ШШ						

	en Construction Log Rennedy/Jenks Consultants									
	SAMP	LES	1							Boring/Well Name TMW-9
	Nered Street		۱.		Depth (feet)	WELL CONSTRUCTION	Graphic Log	USCS Log	Munscll Color	Project Name Boeing C-6
Univen	8 8	I S	per 6	Head Space Reading (mg/L)	-35-		Log	rog	Color	Project Number 984006.00
		×	20 25 30	74.1	40 -	No Grout		SM	2.5Y 5/6	Sandy SILT (continued)
					45 -					<u>j</u>
-		×	23 50	114	50 -	Blank Casing -				increasing silt content, very dense
4					55 -					-
					60 -	Bentonite Seal				
-		×	12 32 50 42 30 32	159	-	Screened Casing Depth to Water		SM	2.5Y 4/3	SAND with Silt: olive brown, fine, very moist, very dense, with silt lenses water at 66'
					70 -					
					75 - - - -					-
					80 -	Bottom of Screen				-

					IOH TOB					Rennedy/Jenks Consultants				
1	SAMP	LES	T	-						Boring/Well Name TMW-9				
	ered fred		, Se C	Depth (feet)	WELL CONSTRUCTION		Graphic Log	USCS	Munsell Color	Project Name Boeing C-6				
	Recov	Blows per 6	Head Space Reading (mg/L)	(feet) -80 -	WELL CONSTRUCTION		Log	USCS Log	Color					
17										Project Number984006.00 SAND with Silt (continued)				
		ŀ				:]-		ĺ						
					Bottom of Screen									
				85 -										
				0.5	Bottom of Well									
	İ													
										Desire Transier 1 4000				
_										Boring Terminated at 86 feet.				
L				90 -		_								
]				
										ļ.				
						-		,		-				
						_								
				95 -		-				_				
				-		-				-				
-				-		-				_				
-				-		-				-				
-				-		-				-				
1				100-						-				
	İ			-		-				-				
1				-		-				-				
\blacksquare				-		-				-				
┠│	ŀ			-		-				-				
\blacksquare				105-		-				-				
$ \cdot $				-		-				-				
				-		-				-				
				-		\mathbb{H}				-				
				-		\mathbb{H}				-				
			1	110-						-				
						$\ \cdot\ $				-				
						H				-				
						$\ \cdot\ $				-				
						H				-				
				115-		$\ \cdot\ $				†				
										†				
						\parallel				†				
										-				
				120-						†				
										†				
										1				
										†				
				<u> </u>						1				
				125						1				
										1				

APPENDIX C

LABORATORY REPORTS FROM SOIL ANALYSES (LOCATED IN VOLUME II)

APPENDIX D

WELL SURVEY REPORT

Bill Carr Survey data Sept. 2,1998 Top of	adjacent surface	Desc.	dirt	conc.	dirt		AC	dirt	dirt	AC	othing)	AC	conc.		conc.	conc.	conc.	conc.	conc.	AC	AC	conc.
Survey dat	adjac	Elev.	52.8	51.29	49.5	51.40	51.38	49.2	48.9	51.6	(covered-found nothing	47.37	47.39	51.42	51.43	51.40	50.61	50.43	50.43	51.42	51.40	51.46
Bill Carr Top of	Casing	Elev.	52.30	51.14	49.85	51.12	51.12	49.58	48.10	51.32	(cover	46.84	46.90	52.41	52.12	51.90	51.85	51.32	51.18	52.25	52.42	52.46
		Desc.	DAC-P1	WCC-10S	WCC-11S	WCC-03D	WCC-03S	WCC-04S	WCC-05S	WCC-06S	WCC-07S	WCC-12S	WCC-09S	TMW-1	TMW-2	TMW-3	TMW-4	TMW-5	TMW-6	T-MM-7	TMW-8	TMM-9
	ces data	Elev.	52.2500	51,1000	49.8300	51.0400	51,0600	49.5400	48.1000	50.8300	48.4500	46.8300	45.8500	52,3500	52.1300	52.0500	51,6800	51.3700	51.6400	52.2100	52.3800	51.4500
	Tait & Associates data	Easting	11194.8600	11338.9000	12744.0100	12583.6100	12608.5200	12741.3500	12963.9000	12580.2400	12730.3700	12749.2600	12928.8700	12211.9953	12478.0859	11909.5434	12498.2124	12038.4349	12552.9324	12560.6995	12571.9285	12344.5297
	ය F	Northing	12988.6300	14038.9800	13870.6800	13265.8700	13238.9000	13075,3000	12998.7000	12953.1000	12868,6500	12715.2100	12627.9400	13143.4896	13161.3821	12315.4722	12334.0904	11931.4503	11936.3211	12701.2508	12812,4178	12740.0461

Bill Carr Survey Pt. No.

APPENDIX E

PROJECT Boeing (-6	DATE 7-8-98
WELL NUMBER: TMW-1 PID Reading: 11.4	BY:
	7000
Depth to Water: <u>65.91' (0943</u>)	Total Depth: 79.95 From come up muidy

START TIME	STOP TIME		METHODS (JSED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
1110		Bail 145	'ng 7' 5	s bailer		
1132		72.9	7.10		20	musky, light brown
1150		72.9	7.09	3990	40	murk, light brown sime some
1220		72.7	7.18	3450	60	musky, light brown some musky light brown, fine sound musky light olse brown,
1237		72.6	7.18	3630	80	murky light brown some line
1242		72.6	7.18	3480	85	some line Sand
1247		72.5	7.22	3 9 90	90	n Some Ang Senit
1249.	1249	72.3	7.14	4020	93	<i>y</i>
,		DW a	6.21			
		7	OTAL GALI	ONS REMOVED].

	TOTAL GALLONS REMOVED	1
Total De	epth after development:: 81.65 Probe came up clean	_
ADDITIO	DNAL NOTES:	
	Water Column: 14.04 x 0.2 = 2.808 x 3 = 8.4991	
	Water Added during Coast. 28 x 3 = 84 gal Total water to purge = 92 gal	
	Total water to ourge = 92 gal	
		-

PROJECT	Boeing	66	DATE	7-8-98
	9			
WELL NUMBER	D. TMI	1-2	DV.	TV

PID Reading: 70 ppm
Depth to Water: 65.61

Total Depth: 80.70 muddy

START TIME	STOP TIME		METHODS	USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
0729		Bail U	Sing 7'	ss hailer		
018O			ion, swach.	55 bailer 10 tellon bailes 10°		
0827		74.1	G.GO	Cond 2400	20	murky, silty, light brown
0907		1 72.7	6,61	2240	40	mucky, silty, light brown Mucky silty light olive brown
0953		72.9	6.73	えのその	60	Mucky, sity, light olype brown
1008		73.1	6.66	2140	70	1,
1050		72.3	6.62	2/90	75	anush silv light brown
102.7		72.3	6.72	2030	80	murty, silty, light brown
1501	1031	72.2	6.54	2100	85	murky, sitry light brown
		DW	<i>Ç5</i> . 80			
-						
			TOTAL GAL	LONS REMOVED	85	

otal Depth after develo	pment:: 81.03 — no mud on probe after sounding TD.
DDITIONAL NOTES:	Water Column: 15.09 x 0.2 = 3.0 x 3 = 9.0 gal
Water added	duling Construction: 25 x 3 = 75 cal
	Juling Construction: 25 x 3 = 7.5 gal Total water to purgl: 84 gal

finish

PROJECT BOSTNA C-6	DATE 7/198
MELLAHIMPED. TAL.	M2

WELL NUMBER: Thu o +
PID Reading: 53

Depth to Water: 66-302 /648

Total Depth: 80:58 Proc

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION	
1650					
		เวเฮ	21		
		T= 221 EC= 1310 pH=	7.23	WATER K. TURSD	
	-	1739	40		
		T= 22.0 GC: 1200 pH	7-17	WATER V. TURBID	
		1210	G 5		
		7=22.0 EC: 1340 pH=	7.25	WATER TORBID. Duck 5	14
		1829	75		
		T= 20.0 GC = 1040 pt=	7-40	TRB10, TY > 200 - MING	« ۲۰ ۱۲
		1830	20		
		T= 22.0 EC: 1250 PH=	7.33	TURBIDITY >200- MINE	ج کادی
		1835	85		
	<u>. </u>	TZ 27.0 EC = 1070 PH2	7.40	102410:14 > 200 minuse	ऽ।द
		1840	१७		
		TE 22-1 EC = 960	7.49		
		TOTAL GALLONS REMOVED		11.29 -18.45	

TO THE GALLONG TIEMOVED	
Total Depth after development:: 19-9	DW-66.38-1845
ADDITIONAL NOTES: WATOR COLUMN = 16 x (2-6= 9.6 gal
25 gal added during drilling - x3=	

PROJECT BOOK C-6

DATE 7/7/98

WELL NUMBER: TMW 05

PID Reading: 10-1

Depth to Water: 66.08@0933 Total Depth: 82.0

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
ur		BAILING J77 SA BALLOR		
	1	206-T2222 EC-770 pH)02	20	TURBIN
1227		T=22.0 EC= 708 pt 7.18	40	TURBLD
1250		E200 EC 669 pt 7.27	60	TORBID
1314		T= 22.0 EC = 673 pH-7.24	90	> 200 154
1323		1221.9 EC. 670 pt= 7.33	90	> 200 NFCL
1331		7=21-8 EC- 652 pt. 7-39	95	> 200 NTY
1336		7221.9 BC. 649 DA-7.40	100	
	1336			
1341		DW- 66.13		
		TOTAL GALLONS REMOVED	10	

		TOTAL GALLO	NS REMOVED	10			
Total De	epth after	development:: 81-1				<u>.</u>	
ADDITIO	ONAL NO	TES: UMOR COW	nN = 16x	0.2 = 3	2× 3= 9.6	9AC	
30 5	al a	Jolan Bury	drilling >	x 3 = C	30+9.6:	100 gat	- to develop
	<u> </u>		σ				
							_

PROJECT BOETAG C-6

DATE 7/7/98

WELL NUMBER: Thu - 06

PID Reading: 24

Depth to Water: 65-990 6725

Total Depth: 81.7

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
0727		BAILING W/S3 BAILOR		
		0808	22	
		T= 21-6 EC= 1530 pH= 6.20		TURBID
		984 0	4/	
		T= 21.7 EC= 1470 pHz 6.94		TURBID
		0912	60	
		T=21.7 EC=1460 pd=6.95		TURBLA
		0945	75	
,		T=21.8 EC=1620 pt=7.08		7URBID
		1010	95	
		T= 21.9 EC-120 14=7-16		TOURINIAN YOU NTU
		1017-21-7 EK= 1200 pH=7-15	(00	n
		1023/T=217 EC=1160 pH=7-20	105	11
		1030 frz 21.6 EC = 1170 pt-7.15	1/2	ų
	1030	DW=66.08		
		TOTAL GALLONS REMOVED	112	·

ADDITIONAL NOTES:

WATER GLOWN - 15.2 x 0.2 . 3 × 3 = 9 CAL

LATTER LINE 100 15.2 x 0.2 . 34 GAL ×3 = 102 +9= 111 gol to dowlyp

- CASING SLIMTLY BONT- BALLOR HANGING UP ONT GETTING TO

TD JSOME WORK

 PROJECT 3000 4 6-6
 DATE 7/6/98

 WELL NUMBER: 100-07
 BY: 05

 PID Reading: 190
 Depth to Water: 66:360 1348
 Total Depth: 83.4

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
1354		BALLINE STER BALLOR		
		147	22	
		T2 22.8 EC. 1490 pt.	7-01	WATER V-TUNBIN
		1448	42	
		T=22.8 EC= 1460 pH=	7-07	WATE V. TURBID
		1513	G3	
		T=22.9 GC= 1440 pH=	7.06	CLATER V- TURBID
		1522	72	
		To 22.8 EC= 1450 pl+ =	7-14	TABIDITY > 200/ lose Selt
		1530	20	
	<i>15</i> 30	T=22.8 GC= 1430 pH	7.17	TURBIO, TY > 200
		DW 66.47 C 1534		
		TOTAL GALLONS REMOVED	20	

1.1272	(SLUMB) 2	12.6 x 0.2				0 REMANG.	
MATAC	GWW -	10 70 -	- 3 , 7 ;	> 11	101195 11	7 1020 300	

PROJECT BOGUE C-6	DATE <u>7/6/98</u>
WELL NUMBER: TMW-08	BY: MB
PID Reading: 44	
Depth to Water: GG-43 @ 1128	Total Depth: 81.2 F700

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
1130		BAILING UTSI BAILOR		MADY WATER
		1706- 20 Ger Bures		
		T=22.8 6C 1790 pH=6	7 W AST ?	e sail quesid
		CATAVIAL TO PLAIL		WASION IN BOTTOM CUP
		1235. 40 Gar BALLED		
		T=22.7 EC-1440 PH 6.8	- WAS	en ruisiD
		1305- 60 GAL BALLOD		
		T= 12.6 EC. 1370 pt= 6	8_3776	L TURBID- DOCK, SICT
		1318-70 Ca BALLED		
		T= 22 9 EC = 1390 PH= G	·72 - ST	TU FIRSTD
	<u></u>	1328- 80 GAL		
		T= 20.5 GZ. 1370 pm 6	.21	2066024 > 500re
	•	1336-86 GAL		
	1336	T= 227 EC= 1380 p#=6"	77	TURBIDITY > 200 NOW -
		1340 DW 66.47		
		TOTAL GALLONS REMOVED	86	

ADDITIONAL NOTES: WATER COWMJ: 15 5 x 0 2 2 3.3 x 3 = 9.6 CAL	otal Depth after de	relopment:: 21.05 FT	<u> </u>		
	DDITIONAL NOTE	3: WATER COWNS	: 15 5 x 02:	2 3.3 × 3= 9.6	CAL
WATER DURING CONSTRUCTION: 24 GAL X3 = 72 - TOTAL 80 GAG	WATER DURY	CONSTRUCTION:	246AL X 3 =	72 - TOTAL 8	20 GC

PROJECT BOSTUC C-C	DATE 7/7/98
WELL NUMBER: TMJ 09	BY: UB
PID Reading: 12	
Depth to Water: <u>60-61@ 1432</u>	Total Depth: 81-52

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
1456		Bull 475' EX BALLON		
		WOULDN'T GOT TO BUTT)~ -	
505		TRIED 11'X PUC BAILER	- 357	DER BUT STILL
		BALLINGSIDLY		
1602		T=22.9 GC= 1060 PH= 6.97	20	V. TORBID
1652		T=22.8 EC=1220 pH2 6.93	35	VITURBID
	17)00	Sht don to Fix hydran	ercles	•
1715		Rosme BALLING		
1726		T=22.8 EC=1140 pH=].09	42	V. PueBID
1754		7:22.7 EC-1000 pH.705	50	TUNBID-DER SIE
1801		T=22.8 GC- 1010 pA-7.12	53	TMAID - DECR. SICT
		•		
		DW 66.62 @ 1208		
		TOTAL GALLONS REMOVED		

		TOTAL	. GALLONS R	EMOVED		
Total De	epth after de	velopment::	79.	6		
ADDITIO	ONAL NOTE	:S:		٠.		

		WELL DEVELOPMEN	1 RECORD	
PROJEC	т		ATE	16/98
PID Rea	ding: _	115	3Y:	
Depth to	Water: _	6648@1551 T	otal Depth:	<u>8152 F</u> TOC
START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION
1600		BAILING JSS BAILOR		
	11.10-	- CASING BOUT ~ 15' AG	NE TO	- Trued SIGNETURD
	_	OF BAILOR & GOT DOWN		
		2/2 POET WOLL - 4/8 TO	SCON BA	ILING - MONED OFF
		- WILL TRY MIRIN IN A	N W 1A	TREEND LINGTH OF
		PUC BAILOR		
			1	
		·		
		TOTAL GALLONS REMOVED		

	į.			i			
		TO	TAL GALLONS R	EMOVED			
Total De	epth after	development:					
ADDITIO	ONAL NO	TES:					
WATE	R Corner	N- 15 X	0.2 = 3 gal 7	(3-96AC			
WATE	R ADDE	D DURING	Vorc ONT	25 GAL 43	. 75+9=	24 GAL	TO DOVOUP

PROJECT Brond 2-6	DATE 7/24/58
WELL NUMBER: Thu 03	BY: MG
PID Reading: NM Depth to Water: GG・10と 0744	Total Depth: <u> </u>
Doparto traia:	Total Dopali.

START TIME	STOP TIME	METHODS USED	GALLONS REMOVED	NOTES & WATER DESCRIPTION	
0750		BAILIUG 77' SS BAILOR		CLOAR & STRAILET TO	TD XX
0910		T=21.9 EC: 1420 pd: 7.02	30	V-TW61D	
1024		T=21.9 EC=1290 pH=7.05	60	TORBID	
<i>েই</i>		T=22.6 GC, 1150 pH.705	(C)	CRAID	
1117	_	T= 21.9 ez. 1280 pH=7-25		U TURBID . PULLING SIJ OF BOTT	نامر
1142		T= 22.0 EC=1260 pt. 7-15	81	TURBID - LUBS 5 TUT	
1154		T= 22.1 EC=1170 PA=7.10	83	TURBID	
1205	1205	1=22.0 EZ=1170 p= 7.14	8s	TURBID - GOTTING	5/69
1210		DW-66.20		are Burn	
					1
	ļ				
					-
	<u> </u>				4
		TOTAL GALLONS REMOVED	85		

	IOIAL	GALLONS REM	OVED 00		
Total Depth after	development: 2	33.05			
ADDITIONAL NO	DTES: [→] No—	GUITE S	FRAIGHT-	BALLOR HANGLICK V	€
	•			DONN BALLING	

APPENDIX F

GROUNDWATER PURGE AND SAMPLE FORMS

ODOR	NONE						->
DEPTH OF PURGE INTAKE (FT)	75	75	25	75	75	75	7)5
DEPTH TO WATER DURING PURGE (FT)	NM	NM	NM	NM	NM	Nm	Nm
NUMBER OF CASING VOLUMES REMOVED	10	2°	2-8	5.0	5-9	6.6	7-0
DEWATERED?	No	No	No	N.	No	No	No
	•	<u> </u>	<u> </u>	.4.		/TC00 T	\ D=== 1 of

Groundwater Purge and Sample Form Date: 7/15/98 Kennedy/Jenks Consultants													
PROJECT I	PROJECT NAME: $B_{ODD} Z C - 6$ WELL NUMBER: $TM \omega - 0/$ PROJECT NUMBER: 984006.00 PERSONNEL: $MBAMC$												
SAMPLE DA		1051-	-105	5	co	DMMENTS: _							
	SAMPLED (_	_										
ı	NG EQUIPM					_							
SAMPLE NO.	CONTAIN- ERS	TYPE	VATIVE	TION	(ml or L)			TODY AT 4°C?	ANALYSIS REQUEST (METHOD)	COMMENTS			
TMW01 WO715 SB	3	VO.A	ACL	No.	3+491	67-20	VL+ GRAY	V	8260 TP#-6				
И	3	11stre Anhe		N°	3×1 Lt~	6780	И	V	TP#-D 2020 8370				
Ø	İ	500nl Place	HW03	405	5001	6780	4	V	Metalo	·			
	TMW-01 3 VOA HCL NO 3+491 67-20 VLt GRAY V TPH-6 N 3 Litre - NO 3x1 Litre 67-20 " V 5020 R270 N 1 Place HNO3 YES 5001 67-20 " V Metale												
					co	OMMENTS: _							
DRUM DI	ESIGNATIO	N(S)/VO	LUME PER	(GAL):_									
					ES OR NO - STY LID, CA			ENTS): CK)?: YES	per le	mp well			
	F WELL HE			SING DRY	?: ÆS	NO							
COMMENTS	`	TES -	ЙО -							;			
GENERAL: WEATHER	R CONDITIO	ONS :	Worn	INA	12515	SE BU	DG	/					
	ATURE (SP								=				
- ARY	ER Prni	PINL	~10.5	GAL	Work	200	304	y on - 1	31400 1	BORCHEOD			
<u> </u>	PROBLEMS ENCOUNTERED DURING PURGING OR SAMPLING? PUMP QUIT - WOKKED INTERMITATION - ARTER PURDING NOT BORY ON - PULLOD 1 BORNED WITH BACKUP AD COMPLETE PURGE 1 SAMPLET TURBIDITY STRYED > SONTH SAMPLED PURGENCE > 6 WOLL VOLUMES, POR WOCK PLAN: CC: Project Manager: Job File: Other:												

Groundwater Purge and Sample Form Date: 17/15/98 Kennedy/Jenks Consultants

PROJECT NAME: _	Bos	NG	·	6	WELL	NUMBE	₹:	TMW.c	2					
PROJECT NUMBER:	984	<u> </u>	00	·	PERSO	PERSONNEL: MB 1 MG								
STATIC WATER LE	VEL (FT):		65	54	MEASU	MEASURING POINT DESCRIPTION: TOC								
WATER LEVEL MEA	SUREMENT N	METHO	o: <u>≤</u> c	CINST	PURGE	E METHO	op:	COLPW	2					
TIME START PURG						PURGE DEPTH (FT)								
TIME END PURGE:		_												
TIME SAMPLED: _		_	>											
COMMENTS:														
WELL VOLUME CALCULATION (FILL IN	CALCULATION TOTAL DEPTH DEPTH TO							ULTIPLIER F IG DIAMETER 4		C	CASING VOLUME			
BEFORE PURGING)	80.5	78	J L	5-54	COLUMN (F)	⊢ x	0.16	0.64	1.44	= -	2-5			
TIME		ils	<u>'</u>	1156	1202	120	6	(APTOR 1213	2)	<u> </u>				
VOLUME PURGED (GAL)	2		4-		6- 7-5		8-7						
PURGE RATE (GPM)		.3	0-5		5.3 0.4								
TEMPERATURE (°C)			24.2	24-2			23.7						
pH				6.56			57	23.7						
SPECIFIC CONDUCTIVITY (m (uncorrected)	icromhos)		১ ৭০	2320	2280		******	2260						
DISSOLVED OXYGE	N (mg/L)				_	-	-,	_						
eH(MV)Pt-AgC1 r	ef.	-	-	_		_								
TURBIDITY/COLOR		11	9-	20	42	3	5	24						
ODOR			3 U E	NONE	7	Po	51BC	F FRID						
DEPTH OF PURGE 75			5	75	75	2.		75						
DEPTH TO WATER PURGE (FT)	DURING	M	ww	NM	N	M	NM							
NUMBER OF CASIN		0	-8	1.6	2.4	3-	8	3.5						
DEWATERED?		N	0	No	No	N	0	No						

Ground	Groundwater Purge and Sample Form Date: 7/15/98 Kennedy/Jenks Consultants											
	PROJECT NAME: BOSING C-6 WELL NUMBER: TMW-02											
PROJECT NUMBER: 984006.00 PERSONNEL: MB +M6												
SAMPLE D	ATA: AMPLED:	1209	-/2/3		co	DMMENTS: _						
DEPTH :	SAMPLED (FT):	75		***************************************	_						
SAMPLI	NG EQUIPM	ENT:	RF2	<u></u>		_						
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?		COMMENTS		
TMW02 W0715 98	3	VOA	HEL	ん。	3 x40ul	لىما	CL-	~	8260 TP#C			
	3	16toe Anbar	_	ん。	3+1L	لاما	حد	V	TPH-D EUBO 8270			
٢	1	500nl Plan	HNO3	455	500-1	Low	CC	~	NEONE			
PURGE WA	TER DISPO	SAL NOT	ES: 8.	י	C	OMMENTS: _	<u> </u>					
DISPOS	AL METHOD	: <u>८०</u> न	e s	TE IA	D Run	۸ _						
DRUM D	ESIGNATIO	N(S)/VO	LUME PER	(GAL):_								
WELL HEA	D CONDITI	ONS CHE	CKLIST (CIRCLE Y	ES OR NO -	IF NO, AD	D COMM	ENTS):				
WELL SEC	URITY DEV	ICES OK	(BOLLAR	DS, CHRI	STY LID, C	ASING LID	AND LO	CK)?: (YES)	NO TEM	PLOZE-		
INSIDE O	F WELL HE	AD AND	OUTER CAS	SING DRY	?: YES	NO		_	PC	K POCHO		
WELL CAS	ING OK?:	YES) _{ио}									
COMMENTS	:		-	,								
								·				
GENERAL: WEATHE	R CONDITI	ONS:	Cic AR	1 WAR	w ->	Worker	کد	NSIDE BU	cos l			
TEMPER	ATURE (SP	ECIFY °	C OR °F)	: <u> </u>	0°F>	700	125	NDE BU	6			
PROBLEMS ENCOUNTERED DURING PURGING OR SAMPLING? None												
Job	ject Mana File: er:					- -						

PROJECT NAME:	Baeina		- G		WELL	NUMBE	R:	TMW-3							
PROJECT NUMBER:	5					_	PERSONNEL: M. Balderman / J. Knight								
STATIC WATER LEV	/EL (FT):		56.0	7		URING POINT DESCRIPTION: N casing fim									
WATER LEVEL MEAS	SUREMENT N	METHO	D: 5	olinst Sour		<i>J</i>									
TIME START PURG						DEPT	H (FT)	<u> つつ '</u>							
TIME END PURGE: 0856															
TIME SAMPLED: 0400															
COMMENTS:								<u> </u>					/		
				T T		Ī		T			-		<u> </u>		
WELL VOLUME CALCULATION	TOTAL OF	PTH		ОЕРТН ТО		WATER COLUMN (FT		CASIN	LTIPLIER F	R (IN)	_	C/	ASING VOLUME		
(FILL IN BEFORE	(FT)			WATER (FT)	ATER (FT) =		⊢ x	2	4	6	┨╺	<u> </u>	(GAL)		
PURGING)	PURGING) \$3.30					16.63		0.16	0.64	1.44	<u> </u>		7.98		
		08	"40	0846	_ _	0852	0856		0917	_					
VOLUME PURGED (GAL)	2		4		6	8		<i>f1</i>			<u>.</u>			
PURGE RATE (GPM)	,33		.33		.33	: 50		,33						
TEMPERATURE (°C)	2.	3.3	23.5		23.6	23	.6	24.1						
pH		7.	03	7.18	-	7.20	7.	24	7,30						
SPECIFIC CONOUCTIVITY (m (uncorrected)	icromhos)	17	60	1590	- -	1520	•	סל	1420						
DISSOLVED OXYGE	N (mg/L)														
eH(MV)Pt-AgC1 r	ef.				_[=			_							
TURBIDITY/COLOR			_	90		45.7	41		26						
OOOR		i\ s) V G	hone		none	ho	10	none						
DEPTH OF PURGE INTAKE (FT)		7	0	70	_	フc	70		70						
DEPTH TO WATER PURGE (FT)	DURING														
NUMBER OF CASIN VOLUMES REMOVED		4	i	< 2		< 3		}	< 4						
OEWATERED?			Vo	No		No	Λ	10	NO						

Ground	water P	urge a	nd San	nple Fo	rm	Date: <u>7</u> -	31-9	∑ Ken	nedy/Je	nks Consultants			
PROJECT	NAME:	Boe'r	g C-	6		WELL	NUMBER	R: TAW	-3				
PROJECT	NUMBER: _	9840	00.300			PERSO	ONNEL:	M. Baldein	ian/J	Knight			
SAMPLE D	ATA: AMPLED: _	09	100		co	DMMENTS: _	579	sped at a	1905 0	lusing collection			
DEPTH	SAMPLED (FT):	<u>70'</u>				40 0	Illow sech	arges K	Psuned collection			
SAMPLI	NG EQUIPM	ENT: <u>6</u>	rundios						•	30 seconds			
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?	ANALYSIS REQUEST (METHOD)	COMMENTS			
WITH W-3-W RPICTO	7	3 × 40m 3 × 1 L 1 × 100ml	None	na 111 yes	1023 A. 1 4 1 L 103 A. 1 MI	26	Clr	yes	VOC, TPL, SVOC, PEST, Motals				
	751-17												
DISPOS	TER DISPO DISCHARGE AL METHOD ESIGNATIO	:			C(gallons to		gallons note collection			
					ES OR NO -	IF NO, AD	D COMM	ENTS):					
					STY LID, C		AND LO	CK)? (YES)	NO				
INSIDE O	F WELL HE	AD AND	OUTER CA	SING DRY	?: (YES)) NO							
	ING OK?:			• /			a	,					
COMMENTS	:	nporan	y We	<u> </u>	o giant	GE SHIFE	rce c	omplet on					
Ī	R CONDITI		_	•									
TEMPER	ATURE (SP	ECIFY °	C OR (°F)	: <u> </u>	50								
PROBLE	MS ENCOUN	TERED D	URING PU	RGING OR	SAMPLING?		ne						
Job	File:					-							

Groundwater Purge and Sample Form

Date: <u>114/98</u>

PROJECT NAME:					<u>-</u>	WELL	NUMBER	:	mw-	04	-,	
PROJECT NUMBER:	<u>98</u>	+00	<u>ر</u> . بی	·		PERSO	ONNEL:	/	NB P G	ul		
STATIC WATER LEV	/EL (FT):	6	6.3	31		MEASI	JRING F	POINT D	ESCRIPTION	N: _\7	ے د	
WATER LEVEL MEAS	SUREMENT N	4ETHOI	o: <u>≤</u> ∠	これとう	7				P2			
TIME START PURGE	:::	25	2,			PURGI	E DEPTH	ı (FT)	75			
TIME END PURGE:		32:	5									
TIME SAMPLED: _	132	6-1	330	0	·							
COMMENTS:												
	······································											
							-,				,	
WELL VOLUME CALCULATION (FILL IN	TOTAL DE			DEPTH T WATER (F	1	WATER COLUMN (F	т)		ULTIPLIER I		_ C	ASING VOLUME (GAL)
BEFORE PURGING)	80.0		<u>-</u> -	66-31	—┨.	= 13·7°		0.16	0.64	1.44	┨╸┞	2.2
TIME		12	58	13	13	1319	/32	7.7	AFTER 1332			
VOLUME PURGED (GAL)		9	5-		8-	9.		11			
PURGE RATE (GPM)	<u> </u>	.3	0	3		0-				<u> </u>	
TEMPERATURE (°C)	25	· 3.3	27		24.8	24	 ન∙દ	75.8	;		
pH			.29	_		6-86			68	7		
SPECIFIC CONDUCTIVITY (m (uncorrected)	i <u>cromhos</u>) cm	13	47	139	96	1365	13	52	/372	2_		
DISSOLVED OXYGE	N (mg/L)	~			-		-		<u> </u>			
eH(MV)Pt-AgC1 r	ef.	_		_					46	_		
TURBIDITY/COLOR		5	\overline{t}	29	}	19	10	7	.16			
ODOR			_				_		_			
DEPTH OF PURGE INTAKE (FT)		7.1	5	75		25	75	<u>, </u>	75			
DEPTH TO WATER PURGE (FT)	DURING	N	M	Wn	1	NM	N		NM			
NUMBER OF CASIN VOLUMES REMOVED		0	9	2-	3	3.6	4	-3	5.0			
DEWATERED?		1	Jo	N	6	No	N	D	NO			

Ground	water P	urge a	nd San	nple Fo	m	Date:	1141	<u>9</u> 8 Ken	nedy/Jer	ıks Consultants
	NAME:		-					R: TMW		
PROJECT	NUMBER:	1040	06 0			PERSO	ONNEL:	MB 1 M	<u>G</u>	
SAMPLE DA	<u>ata</u> : Ampled:	/320	<u>-^/33</u>	0	co	OMMENTS: _				
DEPTH :	SAMPLED (F	FT):	75	5						
SAMPLI	NG EQUIPM	ENT:	2F2							
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?		COMMENTS
TMW04 W0714 98	3	WA	ACL	No	3+40-1	16-19	ci	V	8260 TP#-6-	
и	3	lliter Anha		No	3×16the	16-19	cu	V	TPH-D 2020 8270	
N	1	500nl PLAK	HUD3	YES	Boonl	16-19	cı	/	Metals	
PURGE WA	TER DISPOS DISCHARGE	SAL NOTE	<u>s</u> :	11	co	DMMENTS: _				
	AL METHOD: ESIGNATION				<u>e site</u>					
					es or no –	IF NO, AD	COMMI	ENTS):		
					STY LID, CA				NO Per	temp well
INSIDE OF	· F WELL HEA	AD AND (OUTER CAS	SING DRY	?: (YES	NO			,	
	ING OK?:	120								
			-							
GENERAL: WEATHER	R CONDITIO	ons: (len	1 Wa	n m					
	ATURE (SPE			•						
Oth	er:					- -				

				vv								
PROJECT NAME:	Boen	6 C	<u>-6</u>	· · · · · · · · · · · · · · · · · · ·	WELL	NUMBER:	TMJ O	S				
PROJECT NUMBER:	9840	70G. º	~		PERSO	ONNEL: BAL	DERNAY 1	6 GODIN	1+0			
STATIC WATER LEV	VEL (FT):	େ	, 00		MEASU	JRING POINT I	DESCRIPTION:	TOC				
WATER LEVEL MEAS				にんちて	PURGE	METHOD: 🔀	F-2	· · · · · · · · · · · · · · · · · · ·				
TIME START PURG	E: _0	145			PURGI	E DEPTH (FT)	75					
TIME END PURGE:	101	5										
TIME SAMPLED: _	1016	102							C			
COMMENTS: 50	m PLOD	YAG	2 7 E	2 PURG	12h 5	Ware V	OLUMB					
WELL MALINE												
WELL VOLUME CALCULATION TOTAL DEPTH TO DEPTH TO WATER COLUMN (FT) WATER (FT) WATER (FT) WATER COLUMN (FT) MULTIPLIER FOR CASING DIAMETER (IN) CASING VOLUME (GAL)												
BEFORE PURGING)	81.3	5	-	600	15.35	X 0.16	0.64	1.44	2.5			
TIME		09	50	0953	0955	1002	1005	1009	1015			
VOLUME PURGED (GAL)	2	2	4-5	7.5	8.5	9.0	w.º	12.0 1.			
PURGE RATE (GPM)		4		0,6	0.2	0.2	0-3	0.3			
TEMPERATURE (°C)			23.4	22.8	244	24.7	25.5	24.22			
рН		l		7.02	7.03	7.08	7.12	7-11	7-13 7			
SPECIFIC CONDUCTIVITY (m (uncorrected)	icromhos) cm	71	5	648	635	626	6.23	643	628			
DISSOLVED OXYGE	N (mg/L)	_						-	_			
eH(MV)Pt-AgC1 r	ef.	_				-						
TURBIDITY/COLOR		70)	25	26	68	76	35	9·i 8			
ODOR				ಬಂಬಡ	-				->			
DEPTH OF PURGE INTAKE (FT)		75	· >	75	75	75	75	75	75			
DEPTH TO WATER DURING PURGE (FT)												
NUMBER OF CASIN VOLUMES REMOVED		0.8	3	1.8	3.0	3.4	3-6	4.0	4.8			
DEWATERED?		7	0					→	No			

Ground	water P	urge a	nd San	nple Fo	rm	Date:	14/9	8 Ken	nedy/Jei	nks Consultants
PROJECT 1	IAME:	3000	NG	<u>c</u> -	6	WELL	NUMBER	a: Talu	-05	
								BACDERNA		DIMES
SAMPLE DA	NTA: NMPLED:	1016 -	1021		CX	OMMENTS:				
Ì	SAMPLED (I									
]	G EQUIPM	_				-				
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?	ANALYSIS REQUEST (METHOD)	COMMENTS
71448 071448	3	VOA			3+40,1		Clean	V	2260 +TPH-G	
N	3				3×1L	1	Clen	~	TPH-D 8080 8000	
N	l	500 11 P	th/03	485	Booml	9	Clen	1	Netale	
PURGE WAT	TER DISPO	SAL NOTI	<u>ES</u> : /3^	8	co	OMMENTS: _				
DISPOSA	AL METHOD	. Let	t in d	lvm.	e site	<u>_</u>				
DRUM DI	ESIGNATIO	N(S)/VOI	.UME PER	(GAL):_	Combon	el W/	TML	5-061-0	4	
WELL HEAT	CONDITIO	ONS CHE	KLIST (CIRCLE Y	ES OR NO -	IF NO, AD	D COMM	ENTS):		
WELL SEC	JRITY DEV	ICES OK	(BOLLARI	OS, CHRI	STY LID, CA	ASING LID	AND LO	CK)?: YES	NO Per	kup Well
INSIDE O	WELL HE	AD AND	OUTER CAS	SING DRY	?: (YES)	NO				
WELL CAS	ING OK?:	YES) NO							
COMMENTS			<u> </u>					· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·					·····	<u> </u>	
GENERAL: WEATHER	CONDITION	ONS:(llear	1 Wa	n un					
TEMPER/	ATURE (SP	ECIFY °	COR°F):	80	2°F					
					SAMPLING?					
Job	File:									

PROJECT NAME: _	Box	かんし	— ン	C-6	WELL	NUMBE	R: T	m).0	6		
PROJECT NUMBER:					 -			B1 116			
STATIC WATER LE				74	MEASU	JRING	POINT D	ESCRIPTION	1: YZ	ے د	
WATER LEVEL MEA				_				RFQ			
TIME START PURG		_		.,				75			
	_			<u> </u>	PUKGI	: DEPT	H (FI)	<u> </u>	. —		
TIME END PURGE:					 _					<u> </u>	
TIME SAMPLED: _	(150	>~i1:	5 5	,							
COMMENTS:	- ****									·	
				·							
WELL VOLUME		T				T	Т мі	LTIPLIER F	TOP.		
CALCULATION	TOTAL DE	РТН	1	DEPTH TO	WATER	-\	CASIN	G DIAMETER	R (IN)	C.F	ASING VOLUME
(FILL IN BEFORE	(FT)	75	_	ATER (FT)	COLUMN (F	⊢lx	2	4	6	-	(GAL)
PURGING)	80.			5.94	14-81		0.16		1.44		2-4
TIME		113	<u>3</u> _	1140	1145	114	9	CAPTOR -	SAMILES		
VOLUME PURGED (GAL)	2.4	· ·	74.5	6-5	_	-1	9.9			
PURGE RATE (GPM)	0-4	4	0-4	0-4	24	4				
TEMPERATURE (°C)	24		246	24.6		Top	23.7			
pH		6,8	12	6.85	6.28	6.5		23.7			
SPECIFIC CONDUCTIVITY (m (uncorrected)	i <u>cromhos</u>) cm	126	9	1285	1299	13	04	1297			
DISSOLVED OXYGE	N (mg/L)	_		_	_	-	_	•			
eH(MV)Pt-AgC1 r	ef.					-	_				
TURBIDITY/COLOR	1	17	5	34	13	8	.5	9.5			
ODOR		NVL) E	None	NONE	N	ONE	NoNE	-		
DEPTH OF PURGE INTAKE (FT)		ηξ	5	75	75	7	5	75			
DEPTH TO WATER PURGE (FT)	DURING	W/	m	N/m	N/m	h	lm	N/m			
NUMBER OF CASIN	lG)	0.3	9	1.8	2.7	3	.4	4-1	_		
DEWATERED?		N	o					\rightarrow			

Ground	water P	urge a	nd San	nple Fo	rm	Date:	14/9	8 Ken	nedy/Jer	nks Consultants
	KAME:				6	WELL PERS	NUMBEF	n: The) - 06 M6	
SAMPLE DA	ATA: WPLED:	115	0-11		co					
	SAMPLED (F			2			<u>-</u>			
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?		COMMENTS
TmW06 71498	3	,		i	3+40ml	<u>'</u>	ci.	V	8 220 TPA-G	8260
ч	3				3×16+		CL	/	77H-D 2020 8210	
h	l	500ml PLK	HN03	YER	500nl	9	CL	✓	Nones	
	TER DISPOS DISCHARGE			oL	C	OMMENTS: _				
					in Der		l - 0	9 <i>4</i>		
					ES OR NO -					
WELL SECU	JRITY DEVI	ICES OK	(BOLLARI	OS, CHRIS			AND LO	CK)?: (YES)	NO PE	e Teap were
	WELL HEA			SING DRY	?: (YÉS)	NO				
	NG OK?:		-							
COMMENTS:										
	CONDITION TURE (SPE									
Job	File:									

PROJECT NAME:	P.	- . .		<u> </u>	leP1 ·	MINDER		Tw/\.	017		
				U-6				TMW.			
PROJECT NUMBER:					PERSO	ONNEL:	ME	3 t MC	•		
STATIC WATER LEV	/EL (FT):	<u></u>	3.2(<u> </u>	MEASU	JRING PO	OINT D	ESCRIPTION	: <u> </u>	0C	
WATER LEVEL MEAS	SUREMENT N	METHOD	: _\$	pusst	PURGE	METHO	D:	2F2,			
TIME START PURG					PURGE	DEPTH	(FT)	75			
TIME END PURGE:	15	3	<u> </u>								
TIME SAMPLED: _				l							
COMMENTS: ST	ART S	onpu	wh (<u> </u>	vac on T						
Took RIA	JSATE	BL	ANY	c. Beron	es Jano	المراد	100	eona	TMO	١٠٠٠	7 -
USED RP											
(FILL IN	TOTAL DE		WA	ATER (FT)	WATER COLUMN (FI	Γ)		LTIPLIER F G DIAMETER 4			ASING VOLUME (GAL)
BEFORE PURGING)	83.4	57	- 6	6.26	17.41	x	0.16	0.64	1.44	-	2.8
TIME		15	15	1520	1524	153	31	IS41	1		
VOLUME PURGED (GAL)			4.6	6.0						
PURGE RATE (GPM)				2-0-4						
TEMPERATURE (°C)				24.9			25.0			
pH		69	76	6,98	7-02	7.0	2	6.98			
SPECIFIC CONDUCTIVITY (m (uncorrected)	icromhos) cm	134	1 9	1352	1333	133	38	1331			
DISSOLVED OXYGE	N (mg/L)	_		_							
eH(MV)Pt-AgC1 r	ef.	_	<u></u>	_		_		_			
TURBIDITY/COLOR		16	,3	87	54	42	4	32.8	3		
ODOR		-									
DEPTH OF PURGE INTAKE (FT)		7	5	75	75	75		7<			
DEPTH TO WATER PURGE (FT)	DURING	N)	N	mm	NM	NW		NM.			
NUMBER OF CASIN VOLUMES REMOVED		į,	1	1-6	2.1	2.0	1	3.8			
DEWATERED?		N)	No	N0	N		N0			

Ground	water P	urge a	nd San	nple Fo	rm	Date:	14/9	8 Ken	nedy/Jen	ks Consultants
	NAME:					WELL	NUMBER	R: TMW	-017	
PROJECT	NUMBER: _	<u> 9840</u>	70 C. 27) 		PERSO	ONNEL:	MB + 1	u G	
SAMPLE DA	ATA: AMPLED:	1536	5-154	<i>t</i>]	C(DMMENTS: _				
DEPTH :	SAMPLED (F	T):	75							
SAMPLI	NG EQUIPME	NT:	RF2				<u>-</u>			
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?	ANALYSIS REQUEST (METHOD)	COMMENTS
TMW07 W0714 990	3.	VOA	HCL	No	3×40×1	33 -40	CL	V	8260 TOH-G	
'n	3	lliter Anb	_	No	3 x 16th	33-40	CL	V	TPA·D 2080 8250	
и	1	500nl Olar	HN03	453	500 ml	33-40	Cı	1	Metal:	
	TER DISPO DISCHARGE AL METHOD				co	OMMENTS: _				
DRUM DI	ES IGNATIO	N(S)/VO	LUME PER	(GAL):_		<u>-</u>				
					ES OR NO -				DO.	r demp
					STY LID, C	ASING LID	AND LO	CK)?: YES	NO DO	well'
		^	OUTER CAS	SING DRY	?: YES	NO				
WELL CAS	ING OK?:	YES	NO -							
COMMENTS	·									
GENERAL: WEATHE	R CONDITIO	ons:	?lean	1 Wa	ru					-
TEMPERA	ATURE (SPE	CIFY °	C OR °F)	ع :	20		 -			
PROBLEI	MS ENCOUN	TERED DI	URING PU	RGING OR	SAMPLING?					
Job	File:					_				

	•						
Groundwater Purge	and Sample	Form	Date: <u>'7/</u> (5/98	Kenned	y/Jenks Co	onsultants
PROJECT NAME: BOS		-6		NUMBER:		3	
PROJECT NUMBER: 98			PERSO	NNEL: W	o i m -		
STATIC WATER LEVEL (FT)	: 66.25	7	MEASU	JRING POINT D	ESCRIPTION:	700	
WATER LEVEL MEASUREMENT	METHOD: 500	LNST		METHOD:			
TIME START PURGE:	749		PURGE	DEPTH (FT)	75"	₹T	:
TIME END PURGE: ウタ	18						
TIME SAMPLED: 0819							
COMMENTS: 500	e Diru	LATE S	Ample	· The	<u> </u>	WILL	
FALSE T							
(FILL IN (FT) W	DEPTH TO ATER (FT)	WATER COLUMN (F	CASIN	LTIPLIER FOI G DIAMETER 4	1 1	ASING VOLUME (GAL)
BEFORE PURGING)	25 (27	14.98		0.64	1.44	2-4
TIME	0757	0804	089	0814	APTER 0828		
VOLUME PURGED (GAL)	2	4		7-5	9.8		
PURGE RATE (GPM)	24°0.3	0.3	0.3	0.4			
TEMPERATURE (°C)	24.8	24.7	24.7	24.9	25.2		
рН	6.46	6.50	6.58	6.59	6.62	6-6.5	
SPECIFIC CONDUCTIVITY (micromhos (uncorrected) cm	1246	1265	1263	1273	1285		
DISSOLVED OXYGEN (mg/L)		_	_		1		
eH(MV)Pt-AgCl ref.			_				
TURBIDITY/COLOR	122	57	43	26	17.8		
ODOR	NOVE	Nove	NONE	Nour	Dove		
DEPTH OF PURGE INTAKE (FT)	75	75	75	75	75		
DEPTH TO WATER DURING PURGE (FT)	NM	NM	NW	NM	NM		
NUMBER OF CASING VOLUMES REMOVED	0.8	1.7	2.3	3-1	4.1		

DEWATERED?

Ground	water P	urge a	nd San	nple Fo	rm	Date: 7	15/9	8 Ken	nedy/Jenl	cs Consultant
PROJECT 1	NAME:	3051	or C	-6		WELL	NUMBE	R: TMa)-0 8	100.1
PROJECT 1	NUMBER:	989	1006	oo		PERSO	ONNEL:	MB 1	uc-	
SAMPLE DA	ATA: AMPLED: _(DB19	- 08	27						
DEPTH S	SAMPLED (FT):	75			_				
SAMPLI	NG EQUIPME	ENT: <u>(</u>	F2	 		_				
SAMPLE NO.	NO. OF CONTAIN- ERS	CON- TAINER TYPE	PRESER- VATIVE	FIELD FILTRA- TION	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?		COMMENTS
TMW08 W0715 38	, –			t	3240-1			V	8260 TP#-G-	
И	3	1 Liter Anhan		No	3+11tr	18-25	Gi	V	TP#1D 2020 8270	
v	1	500ml plax	HUO3	र्युटर	500-1	18-25	Ci	V	Metali	
PURGE WAT	TER DISPO	SAL NOTI	<u>Es</u> :	g .8	C(OMMENTS: _				
			•		at sit	e _	··· <u>·</u>		 	
	ESIGNATION					IT NO AD	0.004	ENTC).		
ELL SEC	DITY DEV	TOES OF	<u> </u>	O CHOT	ES OR NO -	ASING LID	AND LO	CK)2. (VEO	NO DEL	- semp wel
NSIDE OF	F WELL HEA	AD AND	OUTER CAS	SING DRY	?: (YES)	NO NO	AND LO	CK):.	110 /	•
	ING OK?:	_				•				
			-							
										
GENERAL: WEATHEI	R CONDITIO	ONS: C	lean	, Wa	1 m					
	ATURE (SPI									
c: Proj	ject Mana	ger:								
Job	File:					- -				

PROJECT NAME: BOOK C-6 WELL NUMBER: TWW - 09											
PROJECT NUMBER:	•				PERSO	NNEL:	Baro	والمناهم	GOD	WAC)
STATIC WATER LEV	VEL (FT):	60	g-56		MEASU	JRING F	OINT D	ESCRIPTION	: 1	oC	
WATER LEVEL MEAS				clingit	PURGE	E METHO	DD:	RF2			
TIME START PURGE: 1630				PURGE	E DEPTH	H (FT) .	75		· · · · · · · · · · · · · · · · · · ·		
TIME END PURGE:	<u> 171</u>	୫									
TIME SAMPLED: _	1715	7-15	723								
COMMENTS: PURING ADD'L 30 CAL TO CONDLAYE VOWE											
Shourist	POR	D	15/2L	Turas							

WELL VOLUME CALCULATION	TOTAL DE	EPTH		DEPTH TO	WATER			LTIPLIER F G DIAMETER		C	ASING VOLUME
(FILL IN BEFORE	(FT)		1	TER (FT)	COLUMN (F	r) x	2	4	6	│	(GAL)
PURGING)	79.67	3	6	6.56	1307	<u>'</u>	0.16	0.64	1.44		2.1
TIME		17	o S	1709	1713	17	16	APTOR 1722			
VOLUME PURGED (GAL)	30)·S	33.5	35.6	36					
PURGE RATE (GPM)	6.6	9	0.8	0.5	0.	3	-			
TEMPERATURE (°C)	23	.9	24.5	24.5	24	.5	24.5	;		
pH		6.	86	7.14	7.09	7.	v9	7-10			
SPECIFIC CONDUCTIVITY (m (uncorrected)	icromhos) cm	9	09	917	918	91	8	913			
DISSOLVED OXYGE	N (mg/L)					_	,	-			
eH(MV)Pt-AgC1 r	ef.				_	_	-				
TURBIDITY/COLOR		3	5	31	18	1	5	13.7			
ODOR		N	rowe			-		->			
DEPTH OF PURGE INTAKE (FT)			5	75	75	2	5	75			
DEPTH TO WATER DURING PURGE (FT)		N	M	NM	NM	N	m	NM			
NUMBER OF CASIN VOLUMES REMOVED		14	t-5	16-0	17-0	17	-4	18-6			
DEWATERED?		1)0	No	No	N.)	No			

Ground	water P	urge a	nd San	nple Fo	rm	Date: 7/	14/94	<u>8</u> Ken	nedy/Jenl	ks Consultants
	NAME:							R: Thes.o	•	
SAMPLE DA	ATA: AMPLED:	1719	1-172	3	co	DMMENTS:				
	SAMPLED (I					_				
	NG EQUIPM			_						
SAMPLE NO.	NO. OF CONTAIN- ERS	CON-		FIELD	VOLUME FILLED (ml or L)	TURBIDITY	COLOR	SHIPPED UNDER CHAIN-OF-CUS- TODY AT 4°C?	ANALYSIS REQUEST (METHOD)	COMMENTS
THW 09 WO714				<u></u>	37421		CL		8260 TP4-6	
'n	3	lliter Anba		N°	3x1Litue	14	cl	V	79#-D 2020 8270	
l.	İ	500nl Plas	HW03	P53	500 ml	14	cı	V	Metalo	
PURGE WA	TER DISPO	SAL NOTE	<u>s</u> :	7	co	OMMENTS: _				
	AL METHOD ESIGNATION				at site	_			-,,,	
					es or no -	IF NO. AD	D COMM	ENTS):		
					STY LID, CA			CK)?: YES	NO per	temp well
INSIDE O	F WELL HE	AD AND (OUTER CAS	SING DRY	?: YES	NO				
WELL CAS	ING OK?:	YES	NO							
COMMENTS	·						·			
GENERAL: WEATHER CONDITIONS: WORKINZ IN DOORS - INSIDE BLOG 1										
TEMPERATURE (SPECIFY °C OR °F):										
PROBLEMS ENCOUNTERED DURING PURGING OR SAMPLING?										
Job	c: Project Manager: Job File: Other:									

APPENDIX G

LABORATORY REPORTS FROM GROUNDWATER ANALYSES

LABORATORY REPORT FORM

Laboratory Name: ORANGE COAST ANALYTICAL, INC.

Address: 3002 Dow Suite 532 Tustin, CA 92780

Telephone: (714) 832-0064

Laboratory Certification

(ELAP) No.: 1416 Expiration Date: 1999

Laboratory Director's Name (Print): Mark Noorani

Client: <u>Kennedy Jenks Consultants</u>

Project No.: <u>984006.00</u>

Project Name: <u>Boeing C-6</u>

Laboratory Reference: KJC 10360

Analytical Method: 8260, Metals, 8015g, 8015m diesel, 8080 Pesticides, 8270

 Date Sampled:
 07/31/98

 Date Received:
 07/31/98

Date Reported: 08/06/98

Sample Matrix: Soil & Water

Chain of Custody Received: Yes

Laboratory Director's Signature: Man Manani

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Sample Description: Water, TMW-3-W073198 Laboratory Sample Number: 98070193 Laboratory Reference #: KJC 10360 Client Project ID: Boeing Client Project #: 984006.00

Sampled:07/31/98Received:07/31/98Analyzed:07/31/98Reported:08/06/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	50	N.D.
Bromodichloromethane	75-27-4	50	N.D.
Bromoform	75-25-2	50	N.D.
Bromomethane	74-83-9	100	N.D.
Carbon Disulfide	75-15-0	50	N.D.
Carbon tetrachloride	56-23-5	50	N.D.
Chlorobenzene	108-90-7	50	N.D.
Chlorodibromomethane	124-48-1	50	N.D.
Chloroethane	75-00-3	50	N.D.
2-Chloroethyl vinyl ether	110-75-8	50	N.D.
Chloroform	67-66-3	50	N.D.
Chloromethane	74-87-3	50	N.D.
1,1-Dichloroethane	75-34-3	50	N.D.
1,2-Dichloroethane	107-06-2	50	N.D.
1,1-Dichloroethene	75-35-4	50	200
Trans 1,2-Dichloroethene	156-60-5	50	N.D.
1,2-Dichloropropane	78-87-5	50	N.D.
cis-1,3-Dichloropropene	10061-01-5	50	N.D.
trans-1,3-Dichloropropene	10061-02-6	50	N.D.
Ethylbenzene	100-41-4	50	N.D.
Methylene chloride	75-09-2	250	N.D.
Styrene	100-42-5	50	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	50	N.D.
Tetrachloroethene	127-18-4	50	N.D.
Toluene	108-88-3	50	N.D.
1,1,1-Trichloroethane	71-55-6	50	N.D.
1,1,2-Trichloroethane	79-00-5	50	N.D.
Trichloroethene	79-01-6	50	8,100
Trichlorofluoromethane	75-69-4	50	N.D.
Vinyl acetate	108-05-4	100	N.D.
Vinyl chloride	75-01-4	50	N.D.
Total Xylenes	1330-20-7	100	N.D.
Dichlorodifluoromethane	75-71-8	50	N.D.
cis-1-2,-Dichloroethene	156-59-2	50	N.D.
2,2-Dichloropropane	594-20-7	50	N.D.
Bromochloromethane	74-97-5	50	N.D.
1,1-Dichloropropene	563-58-6	50	N.D.
Dibromomethane	74-95-3	50	N.D.
1,2-Dibromoethane	106-93-4	50	N.D.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continued)

Sample Description: Water, TMW-3-W073198 Laboratory Sample Number: 98070193 Laboratory Reference #: KJC 10360

ANALYTE	CAS NUMBER	DETECTION Limit (ug/l)	SAMPLE RESULTS (ug/l)
4.0 Diables and a	442.22.0	0.5	ND
1,3-Dichloropropane	142-28-9	0.5	N.D.
Isopropylbenzene	98-82-8	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
1,2,3-Trichloropropane	96-18-4	0.5	N.D.
Bromobenzene	108-86-1	0.5	N.D.
n-Propylbenzene	103-65-1	0.5	N.D.
2-Chlorotoluene	95-49-8	0.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	0.5	N.D.
4-Chlorotoluene	106-43-4	0.5	N.D.
tert-Butylbenzene	98-06-6	0.5	N.D.
1,2,4-Trimethylbenzene	95-63-6	0.5	N.D.
sec-Butylbenzene	135-98-8	0.5	N.D.
4-Isopropyltoluene	99-87-6	0.5	N.D.
1,3-Dichlorobenzene	541-73-1	0.5	N.D.
1,4-Dichlorobenzene	106-46-7	0.5	N.D.
n-Butylbenzene	104-51-8	0.5	N.D.
1,2-Dichlorobenzene	95-50-1	0.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	1.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	0.5	N.D.
Hexachlorobutadiene	87-68-3	0.5	N.D.
Naphthalene	91-20-3	0.5	N.D.
1,2,3-Trichlorobenzene	87-61-6	0.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane	90
Toluene-d8	98
4-Bromofluorobenzene	98

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070194 Laboratory Reference #: KJC 10360

Client Project ID: Boeing Client Project #: 984006.00

> Sampled: 07/31/98 Received: 07/31/98

> Analyzed: 07/31/98 Reported: 08/06/98

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	0.5	N.D.
Bromodichloromethane	75-27-4	0.5	N.D.
Bromoform	75-25-2	0.5	N.D.
Bromomethane	74-83-9	1.0	N.D.
Carbon Disulfide	75-15-0	0.5	N.D.
Carbon tetrachloride	56-23-5	0.5	N.D.
Chlorobenzene	108-90-7	0.5	N.D.
Chlorodibromomethane	124-48-1	0.5	N.D.
Chloroethane	75-00-3	0.5	N.D.
2-Chloroethyl vinyl ether	110-75-8	0.5	N.D.
Chloroform	67-66-3	0.5	N.D.
Chloromethane	74-87-3	0.5	N.D.
1,1-Dichloroethane	75-34-3	0.5	N.D.
1,2-Dichloroethane	107-06-2	0.5	N.D.
1,1-Dichloroethene	75-35-4	0.5	N.D.
Trans 1,2-Dichloroethene	156-60-5	0.5	N.D.
1,2-Dichloropropane	78-87-5	0.5	N.D.
cis-1,3-Dichloropropene	10061-01-5	0.5	N.D.
trans-1,3-Dichloropropene	10061-02-6	0.5	N.D.
Ethylbenzene	100-41-4	0.5	N.D.
Methylene chloride	75-09-2	2.5	N.D.
Styrene ·	100-42-5	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
Tetrachloroethene	127-18-4	0.5	N.D.
Toluene	108-88-3	0.5	N.D.
1,1,1-Trichloroethane	71-55-6	0.5	N.D.
1,1,2-Trichloroethane	79-00-5	0.5	N.D.
Trichloroethene	79-01-6	0.5	N.D.
Trichlorofluoromethane	75-69-4	0.5	N.D.
Vinyl acetate	108-05-4	1.0	N.D.
Vinyl chloride	75-01-4	0.5	N.D.
Total Xylenes	1330-20-7	1.0	N.D.
Dichlorodifluoromethane	75-71-8	0.5	N.D.
cis-1-2,-Dichloroethene	156-59-2	0.5	N.D.
2,2-Dichloropropane	594-20-7	0.5	N.D.
Bromochloromethane	74-97-5	0.5	N.D.
1,1-Dichloropropene	563-58-6	0.5	N.D.
Dibromomethane	74-95-3	0.5	N.D.
1,2-Dibromoethane	106-93-4	0.5	N.D.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continued)

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070194 Laboratory Reference #: KJC 10360

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	0.5	N.D.
Isopropylbenzene	98-82-8	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
1,2,3-Trichloropropane	96-18-4	0.5	N.D.
Bromobenzene	108-86-1	0.5	N.D.
n-Propylbenzene	103-65-1	0.5	N.D.
2-Chlorotoluene	95-49-8	0.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	0.5	N.D.
4-Chlorotoluene	106-43-4	0.5	N.D.
tert-Butylbenzene	98-06-6	0.5	N.D.
1,2,4-Trimethylbenzene sec-Butylbenzene	95-63-6	0.5	N.D.
	135-98-8	0.5	N.D.
4-Isopropyltoluene	99-87-6	0.5	N.D.
1,3-Dichlorobenzene	541-73-1	0.5	N.D.
1,4-Dichlorobenzene	106-46-7	0.5	N.D.
n-Butylbenzene	104-51-8	0.5	N.D.
1,2-Dichlorobenzene	95-50-1	0.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	1.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	0.5	N.D.
Hexachlorobutadiene	87-68-3	0.5	N.D.
Naphthalene	91-20-3	0.5	N.D.
1,2,3-Trichlorobenzene	87-61-6	0.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane	91
Toluene-d8	99
4-Bromofluorobenzene	98

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW-3-W073198 Laboratory Sample Number: 98070193 Laboratory Reference #: KJC 10360 Sampled:07/31/98Received:07/31/98Analyzed:08/03/98Reported:08/06/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55 - 3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Benzyl alcohol	100-51 - 6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85 -6 8-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70 - 3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
4,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 8270) (continued)

Sample Description: Water, TMW-3-W073198 Laboratory Sample Number: 98070193 Laboratory Reference #: KJC 10360

ANALYTE

	CAS	DETECTION Limit	SAMPLE RESULTS	
	NUMBER	(ug/l)	(ug/l)	
2,4-Dinitrotoluene	121-14-2	5.0	N.D.	
2,6-Dinitrotoluene	606-20-2	5.0	N.D.	
Di-N-octyl phthalate	117-84-0	25	N.D.	
Fluoranthene	206-44-0	5.0	N.D.	
Fluorene	86-73-7	5.0	N.D.	
Hexachlorobenzene	118-74-1	5.0	N.D.	
Hexachlorobutadiene	87-68-3	5.0	N.D.	
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.	
Hexachloroethane	67-72-1	5.0	N.D.	
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.	
Isophorone	78-59-1	5.0	N.D.	
2-Methylnaphthalene	91-57-6	5.0	N.D.	
2-Methylphenol	95-48-7	5.0	N.D.	
4-Methylphenol	106-44-5	5.0	N.D.	
Naphthalene	91-20-3	5.0	N.D.	
2-Nitroaniline	88-74-4	50	N.D.	
3-Nitroaniline	99-09-2	50	N.D.	
4-Nitroaniline	100-01-6	50	N.D.	
Nitrobenzene	98-95-3	5.0	N.D.	
2-Nitrophenol	88-75-5	5.0	N.D.	
4-Nitrophenol	100-02-7	50	N.D.	
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.	
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.	
N-Nitrosodimethylamine	62-75-9	5.0	N.D.	
Pentachlorophenol	87-86-5	50	N.D.	
Phenanthrene	85-01-8	5.0	N.D.	
Phenoi	108-95-2	5.0	N.D.	
Pyrene	129-00-0	5.0	N.D.	
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.	
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.	
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.	

Analytes reported as N.D. were not present above the stated limit of detection.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

Client Project ID: Boeing

Client Project #: 984006.00

Sample Description: Water, TMW-3-W073198

Laboratory Sample Number: 98070193

Sampled: 07/31/98

Received: 07/31/98

Analyzed: 08/03,06/98 **Reported:** 08/06/98

Laboratory Reference #: KJC 10360

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Result mg/l
Antimony	6010	0.50	N.D.
Arsenic	6010	0.10	N.D.
Barium	6010	0.01	0.053
Beryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium (VI)	7196	0.01	N.D.
Chromium Total	6010	0.01	0.016
Cobalt	6010	0.10	N.D.
Copper	6010	0.01	N.D.
Lead	6010	0.10	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.10	N.D.
Nickel	6010	0.10	N.D.
Selenium	6010	0.10	N.D.
Silver	6010	0.10	N.D.
Thallium	6010	0.50	N.D.
Vanadium	6010	0.10	N.D.
Zinc	6010	0.01	0.093

Analytes reported as N.D. were not present above the stated limit of detection.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sampled: 07/31/98

Sample Description: Water

Received: 07/31/98

Laboratory Reference #: KJC 10360

Analyzed: 08/06/98

Reported: 08/06/98

DIESEL ANALYSIS (EPA 8015M)

Laboratory Sample Number

Client Sample Number

Extractable Hydrocarbons (mg/l)

98070193

TMW-3-W073198

N.D.

Detection Limit:

0.5

Analyte reported as N.D. was not present above the stated limit of detection.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sampled:

07/31/98

Sample Description: Water

Received: 07/31/98

Laboratory Reference #: KJC 10360

Analyzed: 08/06/98 Reported: 08/06/98

VOLATILE FUEL HYDROCARBONS (EPA 8015m)

Laboratory Sample Number

Client Sample Number

Volatile Fuel **Hvdrocarbons**

(mg/l)(ppm)

98070193

TMW-3-W073198

3.5

Detection Limit:

0.05

Volatile Fuel Hydrocarbons are quantitated against a gasoline standard.

Hydrocarbons detected by this method range from C6 to C14.

Analytes reported as N.D. were not present above the stated limit of detection.

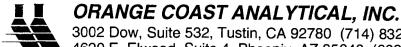
3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

 Sampled:
 07/31/98

 Sample Description: Water, TMW-3-W073198
 Received:
 07/31/98


 Laboratory Sample Number:
 98070193
 Analyzed:
 08/03/98

 Laboratory Reference #:
 KJC 10360
 Reported:
 08/06/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.5	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

QC DATA REPORT

Analysis: Volatile Organics by GC/MS (EPA 8260)

Date of Analysis: 07/31/98

Laboratory Sample No: 98070194 Laboratory Reference No: KJC 10360

Analyte	R1 (ppb)	SP (ppb)	MS (ppb)	MSD (ppb)	PR1 %	PR2 %	RPD %
Benzene	0.0	20	17	16	85	80	6
1,1-Dichloroethene	0.0	20	17	16	85	80	6
Trichloroethene	0.0	20	17	16	85	80	6
Toluene	0.0	20	18	16	90	80	12
Chlorobenzene	0.0	20	17	16	85	80	6

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

QC DATA REPORT

Analysis: Semi-Volatile Organics by GC/MS (EPA 8270)

Date of Analysis: 08/03/98

Laboratory Sample No : OCA 100 Laboratory Reference No : KJC 10360

Analyte	R1 (ng)	SP (ng)	MS (ng)	MSD (ng)	PR1 %	PR2 %	RPD %
1,4-Dichlorobenzene	0.0	50	43	42	86	84	2
n-Nitroso-di-n-propylamine	0.0	50	44	45	88	90	2
1,2,4-Trichlorobenzene	0.0	50	45	45	90	90	0
Acenaphthene	0.0	50	38	39	76	78	3
Pyrene	0.0	50	39	40	78	80	3
Pentachlorophenol	0.0	100	76	82	76	82	8
4-Chloro-3-Methylphenol	0.0	100	63	68	63	68	8
2-Chlorophenol	0.0	100	78	82	78	82	5
Phenol	0.0	100	37	41	37	41	10

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

QC DATA REPORT

Analysis: Metals

Date of Analysis: 08/03,06/98

Laboratory Sample No: 98070193, OCA100 for Hg

Laboratory Reference No: KJC 10360

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Antimony	0.0	1.0	1.14	1.18	114	118	3
Arsenic	0.0	1.0	1.07	1.07	107	107	0
Barium	0.053	0.10	0.154	0.155	101	102	1
Beryllium	0.0	0.10	0.107	0.107	107	107	0
Cadmium	0.0	0.10	0.101	0.101	101	101	0
Chromium (Total)	0.016	0.10	0.120	0.120	104	104	0
Chromium (VI)	0.0	0.50	0.50	0.48	100	96	4
Cobalt	0.0	0.10	0.101	0.101	101	101	0
Copper	0.0	0.10	0.109	0.110	109	110	1
Lead	0.0	1.0	1.02	1.02	102	102	0
Mercury	0.00	0.020	0.018	0.019	90	95	5
Molybdenum	0.0	1.0	1.05	1.07	105	107	2
Nickel	0.0	0.50	0.505	0.505	101	101	0
Selenium	0.0	1.0	1.06	1.08	106	108	2
Silver	0.0	0.50	0.468	0.490	94	98	5
Thallium	0.0	1.0	0.966	1.00	97	100	3
Vanadium	0.0	0.50	0.528	0.531	106	106	1
Zinc	0.093	0.10	0.195	0.194	102	101	1

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

QC DATA REPORT

Analysis: Extractable Fuel Hydrocarbons (EPA 8015m)

Date of Analysis: 08/06/98

Laboratory Sample No :OCA 100

Laboratory Reference No: KJC 10360

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	5.0	5.0	4.4	100	88	13

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

QC DATA REPORT

Analysis: Organochlorine Pesticides (EPA 8080)

Date of Analysis: 08/03/98

Laboratory Sample No :OCA 100

Laboratory Reference No: KJC 10360

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppb)	(ppb)	(ppb)	(ppb)	%	%	%
4,4'-DDT	0.0	1.0	0.68	0.67	68	67	1

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

QC DATA REPORT

Analysis: EPA 5030 / 8015m

Date of Analysis: 08/06/98

Laboratory Sample No : OCA 100

Laboratory Reference No: KJC 10360

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	0.25	0.257	0.259	103	104	1

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

RPD Relative Percent Difference: $\{(MS-MSD) / (MS+MSD)\} \times 100 \times 2$

of Custody Record Analysis Request and CI

Lab Job No;

ORANGE COAST ANALYTICAL, INC.

REMARKS/PRECAUTIONS ₹ S.D. HMMD Page_ Reporting Format: (check) × NORMAL REQUIRED TAT: OOHTANSISMIAND 45 (602) 736-0960 Fax (602) 736-0970 Date/Time: HNO 1/4 HCI KI PRES. 150m 4001 150 ml 10 M 1m0H CONTAINER 4620 E. Elwood, Suite 4 Phoenix, AZ 85040 PROJECT INFORMATION SAMPLE Matrix 3 Balderman ≥ Method of Shipment: 0752 0060 0750 0754 0913 0757 83 80ein4 09160 1520 4160 Received By: 3-18-6 SAMPLE Date PROJECT NAME: SAMPLED 8Y: LOCATION NUMBER: AODRESS: (714) 832-0064, Fax (714) 832-0067 NO. OF CONTAINERS 4 2151 Michelson Dr. Ste. 100 161-2134 7.31.98 Date/Time: 92612 3002 Dow, Suite 532 Tustin, CA 92780 **CUSTOMER INFORMATION** /Jen/s TMW-3-W073198 TMW-3- W073198 TMW-3-14073198 TMW-3-W073198 TMW-3-W073198 3 PHDNE: 714-261-1577 FAX: SAMPLE ID Kennedu Lovine Total No. of Samples: Frio Blank Relinquished By: R 973198 R 073198 R073198 R073198 R073148 SEND REPORT TO: COMPANY ADDRESS

Relinquished By:

OTHER

RWQCB

Date/Time:

Received By:

Date/Time:

on ice

//Jihtact

(check)

Sample Integrity:

Jate/Time:

Received For Lab/By:

Date/Time:

LABORATORY REPORT FORM

Laboratory Name: ORANGE COAST ANALYTICAL, INC.

Address:

3002 Dow Suite 532 Tustin, CA 92780

Telephone:

(714) 832-0064

Laboratory Certification

(ELAP) No.:

1416

Expiration Date:

1999

Laboratory Director's Name (Print):

Mark Noorani

Client:

Kennedy Jenks Consultants

Project No.:

Boeing

Project Name:

984006.00

Laboratory Reference: KJC 10334

Analytical Method: 8260, Metals, 8015g, 8015m diesel, 8080 Pesticides, 8270

Date Sampled:

07/14/98

Date Received:

07/14/98

Date Reported:

07/21/98

Sample Matrix:

Water

Chain of Custody Received:

Yes

Laboratory Director's Signature: Mark Novam

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled:

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070097 Laboratory Reference #: KJC 10334 **Received:** 07/14/98 **Analyzed:** 07/16/98 **Reported:** 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	0.5	N.D.
Bromodichloromethane	75-27-4	0.5	N.D.
Bromoform	75-25-2	0.5	N.D.
Bromomethane	74-83-9	1.0	N.D.
Carbon Disulfide	75-15-0	0.5	N.D.
Carbon tetrachloride	56-23-5	0.5	N.D.
Chlorobenzene	108-90-7	0.5	N.D.
Chlorodibromomethane	124-48-1	0.5	N.D.
Chloroethane	75-00-3	0.5	N.D.
2-Chloroethyl vinyl ether	110-75-8	0.5	N.D.
Chloroform	67-66-3	0.5	N.D.
Chloromethane	74-87-3	0.5	N.D.
1,1-Dichloroethane	75-34-3	0.5	N.D.
1,2-Dichloroethane	107-06-2	0.5	N.D.
1,1-Dichloroethene	75-35-4	0.5	N.D.
Trans 1,2-Dichloroethene	156-60-5	0.5	N.D.
1,2-Dichloropropane	78-87-5	0.5	N.D.
cis-1,3-Dichloropropene	10061-01-5	0.5	N.D.
trans-1,3-Dichloropropene	10061-02-6	0.5	N.D.
Ethylbenzene	100-41-4	0.5	N.D.
Methylene chloride	75-09-2	2.5	N.D.
Styrene	100-42-5	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
Tetrachloroethene	127-18-4	0.5	N.D.
Toluene	108-88-3	0.5	N.D.
1,1,1-Trichloroethane	71-55-6	0.5	N.D.
1,1,2-Trichloroethane	79-00-5	0.5	N.D.
Trichloroethene	79-01-6	0.5	N.D.
Trichlorofluoromethane	75-69-4	0.5	N.D.
Vinyl acetate	108-05-4	1.0	N.D.
Vinyl chloride	75-01-4	0.5	N.D.
Total Xylenes	1330-20-7	1.0	N.D.
Dichlorodifluoromethane	75-71-8	0.5	N.D.
cis-1-2,-Dichloroethene	156-59-2	0.5	N.D.
2,2-Dichloropropane	594-20-7	0.5	N.D.
Bromochloromethane	74-97-5	0.5	N.D.
1,1-Dichloropropene	563-58-6	0.5	N.D.
Dibromomethane	74-95-3	0.5	N.D.
1,2-Dibromoethane	106-93-4	0.5	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070097 Laboratory Reference #: KJC 10334

Naphthalene

1,2,3-Trichlorobenzene

VOLATILE ORGANICS BY GC/N	CAS	ntinued) DETECTION Limit	SAMPLE RESULTS
,	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	0.5	N.D.
Isopropylbenzene	98-82-8	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
1,2,3-Trichloropropane	96-18-4	0.5	N.D.
Bromobenzene	108-86-1	0.5	N.D.
n-Propylbenzene	103-65-1	0.5	N.D.
2-Chlorotoluene	95-49-8	0.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	0.5	N.D.
4-Chlorotoluene	106-43-4	0.5	N.D.
tert-Butylbenzene	98-06-6	0.5	N.D.
1,2,4-Trimethylbenzene	95-63-6	0.5	N.D.
sec-Butylbenzene	135-98-8	0.5	N.D.
4-Isopropyltoluene	99-87-6	0.5	N.D.
1,3-Dichlorobenzene	541-73-1	0.5	N.D.
1,4-Dichlorobenzene	106-46-7	0.5	N.D.
n-Butylbenzene	104-51-8	0.5	N.D.
1,2-Dichlorobenzene	95-50-1	0.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	1.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	0.5	N.D.
Hexachlorobutadiene	87-68-3	0.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

91-20-3

87-61-6

Surrogate Recoveries	%	
Dibromofluoromethane		109
Toluene-d8		95
4-Bromofluorobenzene		98

0.5

0.5

N.D.

N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW05W071498 Laboratory Sample Number: 98070093 Laboratory Reference #: KJC 10334 Sampled:07/14/98Received:07/14/98Analyzed:07/15/98Reported:07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	25	N.D.
Bromodichloromethane	75-27-4	25	N.D.
Bromoform	75-25-2	25	N.D.
Bromomethane	74-83-9	50	N.D.
Carbon Disulfide	75-15-0	25	N.D.
Carbon tetrachloride	56-23-5	25	N.D.
Chlorobenzene	108-90-7	25	N.D.
Chlorodibromomethane	124-48-1	25	N.D.
Chloroethane	75-00-3	25	N.D.
2-Chloroethyl vinyl ether	110-75-8	25	N.D.
Chloroform	67-66-3	25	N.D.
Chloromethane	74-87-3	25	N.D.
1,1-Dichloroethane	75-34-3	25	N.D.
1,2-Dichloroethane	107-06-2	25	N.D.
1,1-Dichloroethene	75-35-4	25	460
Trans 1,2-Dichloroethene	156-60-5	25	N.D.
1,2-Dichloropropane	78-87-5	25	N.D.
cis-1,3-Dichloropropene	10061-01-5	25	N.D.
trans-1,3-Dichloropropene	10061-02-6	25	N.D.
Ethylbenzene	100-41-4	25	N.D.
Methylene chloride	75-09-2	125	N.D.
Styrene	100-42-5	25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25	N.D.
Tetrachloroethene	127-18-4	25	N.D.
Toluene	108-88-3	25	N.D.
1,1,1-Trichloroethane	71-55-6	25	N.D.
1,1,2-Trichloroethane	79-00-5	25	N.D.
Trichloroethene	79-01-6	25	3,700
Trichlorofluoromethane	75-69-4	25	N.D.
Vinyl acetate	108-05-4	50	N.D.
Vinyl chloride	75-01-4	25	N.D.
Total Xylenes	1330-20-7	25	N.D.
Dichlorodifluoromethane	75-71-8	25	N.D.
cis-1-2,-Dichloroethene	156-59-2	25	N.D.
.,2-Dichloropropane	594-20-7	25	N.D.
Bromochloromethane	74-97-5	25	N.D.
1,1-Dichloropropene	563-58-6	25	N.D.
Dibromomethane	74-95-3	25	N.D.
1,2-Dibromoethane	106-93-4	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW05W071498 Laboratory Sample Number: 98070093 Laboratory Reference #: KJC 10334

VOLATILE	ORGANICS BY	GC/MS (EPA 8260)) (continued)
ANAL YTE		CAS	DE

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
4.2 Diableronrenone	142-28-9	25	N.D.
1,3-Dichloropropane	98-82-8	25 25	N.D.
Isopropylbenzene			N.D.
1,1,2,2-Tetrachloroethane	79- 34 -5 96-18-4	25 25	N.D.
1,2,3-Trichloropropane		25 25	
Bromobenzene	108-86-1 103-65-1		N.D. N.D.
n-Propylbenzene	95-49-8	25 25	N.D.
2-Chlorotoluene	95-49-6 108-67-8	25 25	N.D. N.D.
1,3,5-Trimethylbenzene	106-43-4	25 25	N.D.
4-Chlorotoluene	98-06-6	25 25	N.D.
tert-Butylbenzene	95-63-6	25 25	N.D.
1,2,4-Trimethylbenzene			N.D.
rec-Butylbenzene	135-98-8 99-87-6	25 25	N.D. N.D.
4-Isopropyltoluene	541-73-1	25 25	N.D.
1,3-Dichlorobenzene	106-46-7	25 25	N.D.
1,4-Dichlorobenzene	104-51-8	25 25	N.D. N.D.
n-Butylbenzene	95-50-1	25 25	N.D.
1,2-Dichlorobenzene		50	N.D.
1-2-Dibromo-3-CPA	96-12-8		N.D.
1,2,4-Trichlorobenzene	120-82-1	25	
Hexachlorobutadiene	87-68-3	25 25	N.D.
Naphthalene	91-20-3	25 25	N.D.
1,2,3-Trichlorobenzene	87-61-6	25	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Re	coveries	%
--------------	----------	---

Dibromofluoromethane	88
Toluene-d8	97
4-Bromofluorobenzene	95

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW06W071498
Laboratory Sample Number: 98070094
Laboratory Reference #: KJC 10334

 Sampled:
 07/14/98

 Received:
 07/14/98

 Analyzed:
 07/15/98

 Reported:
 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	2.5	N.D.
Bromodichloromethane	75-27-4	2.5	N.D.
Bromoform	75-25-2	2.5	N.D.
Bromomethane	74-83-9	5.0	N.D.
Carbon Disulfide	75-15-0	2.5	N.D.
Carbon tetrachloride	56-23-5	2.5	N.D.
Chlorobenzene	108-90-7	2.5	N.D.
Chlorodibromomethane	124 -4 8-1	2.5	N.D.
Chloroethane	75-00-3	2.5	N.D.
-Chloroethyl vinyl ether	110-75-8	2.5	N.D.
Chloroform	67-66-3	2.5	550
Chloromethane	74-87-3	2.5	N.D.
1,1-Dichloroethane	75-34-3	2.5	N.D.
1,2-Dichloroethane	107-06-2	2.5	N.D.
,1-Dichloroethene	75-35-4	2.5	26
Frans 1,2-Dichloroethene	156-60-5	2.5	N.D.
,2-Dichloropropane	78-87-5	2.5	N.D.
cis-1,3-Dichloropropene	10061-01-5	2.5	N.D.
rans-1,3-Dichloropropene	10061-02-6	2.5	N.D.
Ethylbenzene	100-41-4	2.5	N.D.
Methylene chloride	75-09-2	13	N.D.
Styrene	100-42-5	2.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	2.5	N.D.
Tetrachloroethene	127-18-4	2.5	N.D.
l'oluene l'acceptant de la company de la com	108-88-3	2.5	N.D.
I,1,1-Trichloroethane	71-55-6	2.5	N.D.
,1,2-Trichloroethane	79-00-5	2.5	N.D.
richloroethene	79-01-6	2.5	490
richlorofluoromethane	75-69-4	2.5	N.D.
/inyl acetate	108-05-4	5.0	N.D.
/inyl chloride	75-01-4	2.5	N.D.
Total Xylenes	1330-20-7	2.5	N.D.
Dichlorodifluoromethane	75-71-8	2.5	N.D.
is-1-2,-Dichloroethene	156-59-2	2.5	3.4
∠,2-Dichloropropane	594-20-7	2.5	N.D.
Bromochloromethane	7 4 -97 - 5	2.5	N.D.
1,1-Dichloropropene	563-58-6	2.5	N.D.
Dibromomethane	74-95-3	2.5	N.D.
1,2-Dibromoethane	106-93-4	2.5	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW06W071498 Laboratory Sample Number: 98070094 Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	2.5	N.D.
Isopropylbenzene	98-82-8	2.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	2.5	N.D.
1,2,3-Trichloropropane	96-18-4	2.5	N.D.
Bromobenzene	108-86-1	2.5	N.D.
n-Propylbenzene	103-65-1	2.5	N.D.
2-Chlorotoluene	95-49-8	2.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	2.5	N.D.
4-Chlorotoluene	106-43-4	2.5	N.D.
tert-Butylbenzene	98-06-6	2.5	N.D.
1,2,4-Trimethylbenzene	95-63-6	2.5	N.D.
sec-Butylbenzene	135-98-8	2.5	N.D.
4-Isopropyltoluene	99-87-6	2.5	N.D.
1,3-Dichlorobenzene	541-73-1	2.5	N.D.
1,4-Dichlorobenzene	106-46-7	2.5	N.D.
n-Butylbenzene	104-51-8	2.5	N.D.
1,2-Dichlorobenzene	95-50-1	2.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	2.5	N.D.
Hexachlorobutadiene	87-68-3	2.5	N.D.
Naphthalene	91-20-3	2.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

87-61-6

1,2,3-Trichlorobenzene

Surrogate Recoveries %	
Dibromofluoromethane	97
Toluene-d8	96
4-Bromofiuorobenzene	99

2.5

N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW04W071498
Laboratory Sample Number: 98070095
Laboratory Reference #: KJC 10334

Sampled:07/14/98Received:07/14/98Analyzed:07/15/98Reported:07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/I)	(ug/l)
Benzene	71-43-2	25	N.D.
Bromodichloromethane	75-27-4	25	N.D.
Bromoform	75-25-2	25	N.D.
Bromomethane	74-83-9	50	N.D.
Carbon Disulfide	75-15-0	25	N.D.
Carbon tetrachloride	56-23-5	25	N.D.
Chlorobenzene	108-90-7	25	N.D.
Chlorodibromomethane	124-48-1	25	N.D.
Chloroethane	75-00-3	25	N.D.
`-Chloroethyl vinyl ether	110-75-8	25	N.D.
Chloroform	67-66-3	25	N.D.
Chloromethane	74-87-3	25	N.D.
1,1-Dichloroethane	75-34-3	25	55
1,2-Dichloroethane	107-06-2	25	49
1,1-Dichloroethene	75-35-4	25	1,500
Trans 1,2-Dichloroethene	156-60-5	25	66
1,2-Dichloropropane	78-87-5	25	N.D.
cis-1,3-Dichloropropene	10061-01-5	25	N.D.
trans-1,3-Dichloropropene	10061-02-6	25	N.D.
Ethylbenzene	100-41-4	25	N.D.
Methylene chloride	75-09-2	125	N.D.
Styrene	100-42-5	25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25	N.D.
Tetrachloroethene	127-18-4	25	N.D.
Toluene	108-88-3	25	N.D.
1,1,1-Trichloroethane	71-55-6	25	N.D.
1,1,2-Trichloroethane	79-00-5	25	43
Trichloroethene	79-01-6	25	2,300
Trichlorofluoromethane	75-69-4	25	N.D.
Vinyl acetate	108-05-4	50	N.D.
Vinyl chloride	75-01-4	25	N.D.
Total Xylenes	1330-20-7	25	N.D.
Dichlorodifluoromethane	75-71-8	25	N.D.
cis-1-2,-Dichloroethene	156-59-2	25	110
2,2-Dichloropropane	594-20-7	25	N.D.
Bromochloromethane	74-97-5	25	N.D.
1,1-Dichloropropene	563-58-6	25	N.D.
Dibromomethane	74-95-3	25	N.D.
1,2-Dibromoethane	106-93-4	25	N.D.

Orange Coast Analytical, inc.

Sample Description: Water, TMW04W071498 Laboratory Sample Number: 98070095 Laboratory Reference #: KJC 10334

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continued) ANALYTE CAS **DETECTION Limit** SAMPLE RESULTS NUMBER (ug/l) (ug/l) 1,3-Dichloropropane 142-28-9 25 N.D. Isopropylbenzene 98-82-8 25 N.D. 1,1,2,2-Tetrachloroethane 79-34-5 25 N.D. 1,2,3-Trichloropropane 96-18-4 25 N.D. Bromobenzene 108-86-1 25 N.D. n-Propylbenzene 25 103-65-1 N.D. 2-Chlorotoluene 95-49-8 25 N.D. 1,3,5-Trimethylbenzene 108-67-8 25 N.D. 4-Chlorotoluene 25 106-43-4 N.D. tert-Butylbenzene 98-06-6 25 N.D. 1,2,4-Trimethylbenzene 95-63-6 25 N.D. sec-Butylbenzene 135-98-8 25 N.D. 4-Isopropyltoluene 99-87-6 25 N.D. 1,3-Dichlorobenzene 25 541-73-1 N.D. 1,4-Dichlorobenzene 106-46-7 25 N.D. n-Butylbenzene 104-51-8 25 N.D. 1,2-Dichlorobenzene 95-50-1 25 N.D. 1-2-Dibromo-3-CPA 96-12-8 50 N.D. 1.2.4-Trichlorobenzene 120-82-1 25 N.D. Hexachlorobutadiene 87-68-3 25 N.D. Naphthalene 91-20-3 25 N.D. 1,2,3-Trichlorobenzene 87-61-6 25 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %	
Dibromofluoromethane	98
Toluene-d8	98
4-Bromofluorobenzene	98

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, R071498 Laboratory Sample Number: 98070096 Laboratory Reference #: KJC 10334

 Sampled:
 07/14/98

 Received:
 07/14/98

 Analyzed:
 07/15/98

 Reported:
 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	0.5	N.D.
Bromodichloromethane	75-27-4	0.5	N.D.
Bromoform	75-25-2	0.5	N.D.
Bromomethane	74-83-9	1.0	N.D.
Carbon Disulfide	75-15-0	0.5	N.D.
Carbon tetrachloride	56-23-5	0.5	N.D.
Chlorobenzene	108-90-7	0.5	N.D.
Chlorodibromomethane	124-48-1	0.5	N.D.
Chloroethane	75-00-3	0.5	N.D.
Chloroethyl vinyl ether	110-75-8	0.5	N.D.
Chloroform	67-66-3	0.5	N.D.
Chloromethane	74-87-3	0.5	N.D.
1,1-Dichloroethane	75-34-3	0.5	N.D.
1,2-Dichloroethane	107-06-2	0.5	N.D.
1,1-Dichloroethene	75-35-4	0.5	N.D.
Trans 1,2-Dichloroethene	156-60-5	0.5	N.D.
1,2-Dichloropropane	78-87-5	0.5	N.D.
cis-1,3-Dichloropropene	10061-01-5	0.5	N.D.
trans-1,3-Dichloropropene	10061-02-6	0.5	N.D.
Ethylbenzene	100-41-4	0.5	N.D.
Methylene chloride	75-09-2	2.5	N.D.
Styrene	100-42-5	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
Tetrachloroethene	127-18-4	0.5	N.D.
Toluene	108-88-3	0.5	N.D.
1,1,1-Trichloroethane	71-55-6	0.5	N.D.
1,1,2-Trichloroethane	79-00-5	0.5	N.D.
Trichloroethene	79-01-6	0.5	N.D.
Trichlorofluoromethane	75-69-4	0.5	N.D.
Vinyl acetate	108-05-4	1.0	N.D.
Vinyl chloride	75-01-4	0.5	N.D.
Total Xylenes	1330-20-7	1.0	N.D.
Dichlorodifluoromethane	75-71-8	0.5	N.D.
cis-1-2,-Dichloroethene	156-59-2	0.5	N.D.
2,2-Dichloropropane	594-20-7	0.5	N.D.
Bromochloromethane	74-97-5	0.5	N.D.
1,1-Dichloropropene	563-58-6	0.5	N.D.
Dibromomethane	74-95-3	0.5	N.D.
1,2-Dibromoethane	106-93-4	0.5	N.D.

Orange Coast Analytical,Inc.

Sample Description: Water, R071498 Laboratory Sample Number: 98070096 Laboratory Reference #: KJC 10334

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continue	VOLATILE	ORGANICS	BY	GC/MS	(EPA	8260	(continued
---	-----------------	-----------------	----	-------	------	------	------------

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	0.5	N.D.
Isopropylbenzene	98-82-8	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
1,2,3-Trichloropropane	96-18-4	0.5	N.D.
Bromobenzene	108-86-1	0.5	N.D.
n-Propylbenzene	103-65-1	0.5	N.D.
2-Chlorotoluene	95-49-8	0.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	0.5	N.D.
4-Chlorotoluene	106-43-4	0.5	N.D.
tert-Butylbenzene	98-06-6	0.5	N.D.
1,2,4-Trimethylbenzene	95-63-6	0.5	N.D.
sec-Butylbenzene	135-98-8	0.5	N.D.
Isopropyltoluene	99-87-6	0.5	N.D.
1,3-Dichlorobenzene	541-73-1	0.5	N.D.
1,4-Dichlorobenzene	106-46-7	0.5	N.D.
n-Butylbenzene	104-51-8	0.5	N.D.
1,2-Dichlorobenzene	95-50-1	0.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	1.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	0.5	N.D.
Hexachlorobutadiene	87-68-3	0.5	N.D.
Naphthalene	91-20-3	0.5	N.D.
1,2,3-Trichlorobenzene	87-61-6	0,5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane 96
Toluene-d8 99
4-Bromofluorobenzene 97

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW07W071498 Laboratory Sample Number: 98070098 Laboratory Reference #: KJC 10334 Sampled:07/14/98Received:07/14/98Analyzed:07/16/98Reported:07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	13	40
Bromodichloromethane	75-27-4	13	N.D.
Bromoform	75 -2 5-2	13	N.D.
Bromomethane	74-83-9	25	N.D.
Carbon Disulfide	75-15-0	13	N.D.
Carbon tetrachloride	56-23-5	13	N.D.
Chiorobenzene	108-90-7	13	N.D.
Chlorodibromomethane	124-48-1	13	N.D.
Chloroethane	75-00-3	13	N.D.
Chloroethyl vinyl ether	110-75-8	13	N.D.
_hloroform	67-66-3	13	26
Chloromethane	74-87-3	13	N.D.
1,1-Dichloroethane	75-34-3	13	73
1,2-Dichloroethane	107-06-2	13	60
1,1-Dichloroethene	75-35-4	13	3,000
Trans 1,2-Dichloroethene	156-60-5	13	83
1,2-Dichloropropane	78-87-5	13	N.D.
cis-1,3-Dichloropropene	10061-01-5	13	N.D.
rans-1,3-Dichloropropene	10061-02-6	13	N.D.
Ethylbenzene	100-41-4	13	N.D.
Methylene chloride	75-09-2	63	N.D.
Styrene	100-42-5	13	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	13	N.D.
Tetrachloroethene	127-18-4	13	N.D.
Foluene	108-88-3	13	N.D.
1,1,1-Trichloroethane	71-55-6	13	20
1,1,2-Trichloroethane	79-00-5	13	29
Trichloroethene	79-01-6	13	3,500
Trichlorofluoromethane	75-69-4	13	N.D.
/inyl acetate	108-05-4	25	N.D.
/inyl chloride	75-01-4	13	N.D.
Total Xylenes	1330-20-7	25	N.D.
Dichlorodifluoromethane	75-71-8	13	N.D.
sis-1-2,-Dichloroethene	156-59-2	13	120
.,2-Dichloropropane	594-20-7	13	N.D.
Bromochloromethane	74-97-5	13	N.D.
1,1-Dichloropropene	563-58-6	13	N.D.
Dibromomethane	74-95-3	13	N.D.
1,2-Dibromoethane	106-93-4	13	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW07W071498 Laboratory Sample Number: 98070098 Laboratory Reference #: KJC 10334

VOLATILE	ORGANICS	BY GC/MS	(EPA 8260)	(continued)

ANALYTE	CAS NUMBER	DETECTION Limit (ug/l)	SAMPLE RESULTS (ug/l)
1,3-Dichloropropane	142-28-9	13	N.D.
Isopropylbenzene	98-82-8	13	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	13	N.D.
1,2,3-Trichloropropane	96-18-4	13	N.D.
Bromobenzene	108-86-1	13	N.D.
n-Propylbenzene	103-65-1	13	N.D.
2-Chlorotoluene	95-49-8	13	N.D.
1,3,5-Trimethylbenzene	108-67-8	13	N.D.
4-Chlorotoluene	106-43-4	13	N.D.
tert-Butylbenzene	98-06-6	13	N.D.
1,2,4-Trimethylbenzene	95-63-6	13	N.D.
ec-Butylbenzene	135-98-8	13	N.D.
4-Isopropyltoluene	99-87-6	13	N.D.
1,3-Dichlorobenzene	541-73-1	13	N.D.
1,4-Dichlorobenzene	106-46-7	13	N.D.
n-Butylbenzene	1 04-51- 8	13	N.D.
1,2-Dichlorobenzene	95 -50- 1	13	N.D.
1-2-Dibromo-3-CPA	96-12-8	25	N.D.
1,2,4-Trichlorobenzene	120-82-1	13	N.D.
Hexachlorobutadiene	87-68-3	13	N.D.
Naphthalene	91-20-3	13	N.D.
1,2,3-Trichlorobenzene	87-61-6	13	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane 117 Toluene-d8 94 4-Bromofluorobenzene 100

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing **Client Project #: 984**006.00

Irvine, CA 92612

Sampled: 07/14/98 Sample Description: Water, TMW09W071498 Received: 07/14/98 Laboratory Sample Number: 98070099 Analyzed: 07/16/98 Laboratory Reference #: KJC 10334 Reported: 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/I)	(ug/l)
Benzene	71-43-2	1.0	N.D.
Bromodichloromethane	75-27-4	1.0	N.D.
Bromoform	75-25-2	1.0	N.D.
Bromomethane	74-83-9	2.0	N.D.
Carbon Disulfide	75-15-0	1.0	N.D.
Carbon tetrachloride	56-23-5	1.0	N.D.
Chlorobenzene	108-90-7	1.0	N.D.
Chlorodibromomethane	124-48-1	1.0	N.D.
Chloroethane	75-00-3	1.0	N.D.
-Chloroethyl vinyl ether	110-75-8	1.0	N.D.
Chloroform	67-66-3	1.0	2.9
Chloromethane	74-87-3	1.0	N.D.
1,1-Dichloroethane	75-34-3	1.0	N.D.
1,2-Dichloroethane	107-06-2	1.0	N.D.
1,1-Dichloroethene	75-35-4	1.0	24
Trans 1,2-Dichloroethene	156-60-5	1.0	N.D.
1,2-Dichloropropane	78-87-5	1.0	N.D.
cis-1,3-Dichloropropene	10061-01-5	1.0	N.D.
trans-1,3-Dichloropropene	10061-02-6	1.0	N.D.
Ethylbenzene	100-41-4	1.0	N.D.
Methylene chloride	75-09-2	5.0	N.D.
Styrene	100-42-5	1.0	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	1.0	N.D.
Tetrachloroethene	127-18-4	1.0	2.1
Toluene	108-88-3	1.0	N.D.
1,1,1-Trichloroethane	71-55-6	1.0	N.D.
1,1,2-Trichloroethane	79-00-5	1.0	N.D.
Trichloroethene	79-01-6	1.0	290
Trichlorofluoromethane	75-69-4	1.0	N.D.
Vinyl acetate	108-05-4	2.0	N.D.
Vinyl chloride	75-01 -4	1.0	N.D.
Total Xylenes	1330-20-7	2.0	N.D.
Dichlorodifluoromethane	75-71-8	1.0	N.D.
cis-1-2,-Dichloroethene	156-59-2	1.0	N.D.
2,2-Dichloropropane	594-20-7	1.0	N.D.
Bromochloromethane	74-97-5	1.0	N.D.
1,1-Dichloropropene	563-58- 6	1.0	N.D.
Dibromomethane	74-95-3	1.0	N.D.
1,2-Dibromoethane	106-93-4	1.0	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW09W071498 Laboratory Sample Number: 98070099 Laboratory Reference #: KJC 10334

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continued)

ANALYTE	CAS NUMBER	DETECTION Limit (ug/l)	SAMPLE RESULTS (ug/l)
		(-3-)	(13.7
1,3-Dichloropropane	142-28-9	1.0	N.D.
Isopropylbenzene	98-82-8	1.0	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	1.0	N.D.
1,2,3-Trichloropropane	96-18-4	1.0	N.D.
Bromobenzene	108-86-1	1.0	N.D.
n-Propylbenzene	103-65-1	1.0	N.D.
2-Chlorotoluene	95-49-8	1.0	N.D.
1,3,5-Trimethylbenzene	108-67-8	1.0	N.D.
4-Chlorotoluene	106-43-4	1.0	N.D.
tert-Butylbenzene	98-06-6	1.0	N.D.
1,2,4-Trimethylbenzene	95-63-6	1.0	N.D.
sec-Butylbenzene	135-98-8	1.0	N.D.
4-Isopropyltoluene	99-87-6	1.0	N.D.
1,3-Dichlorobenzene	541-73-1	1.0	N.D.
1,4-Dichlorobenzene	106-46-7	1.0	N.D.
n-Butylbenzene	104-51-8	1.0	N.D.
1,2-Dichlorobenzene	95-50-1	1.0	N.D.
1-2-Dibromo-3-CPA	96-12-8	2.0	N.D.
1,2,4-Trichlorobenzerie	120-82-1	1.0	N.D.
Hexachlorobutadiene	87-68-3	1.0	N.D.
Naphthalene	91-20-3	1.0	N.D.
1,2,3-Trichlorobenzene	87-61-6	1.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane 106
Toluene-d8 96
4-Bromofluorobenzene 100

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW05W071498
Laboratory Sample Number: 98070093
Laboratory Reference #: KJC 10334

Sampled:07/14/98Received:07/14/98Analyzed:07/15/98Reported:07/21/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Jenzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chiorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
',6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606 - 20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW05W071498

Laboratory Sample Number: 98070093 Laboratory Reference #: KJC 10334

SEMI-VOLATILE ORGANICS BY ANALYTE	CAS	(continued) DETECTION Limit	SAMPLE RESULTS
ANALTIE			
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
'-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

2,4,6-Trichlorophenol 88-06-2 5.0

Analytes reported as N.D. were not present above the stated limit of detection.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Client Project ID: Boeing **Client Project #:** 984006.00

Sample Description: Water, TMW06W071498 Laboratory Sample Number: 98070094 Laboratory Reference #: KJC 10334

Sampled: 07/14/98 Received: 07/14/98 Analyzed: 07/15/98 Reported: 07/21/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-2 4- 2	25	N.D.
lenzo (a) pyrene	50-32-8	2 5	N.D.
denzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
I-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
f-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
I,4-Dichlorobenzene	106-46-7	5.0	N.D.
2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW06W071498 Laboratory Sample Number: 98070094 Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5 .0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5 .0	N.D.
4-Methylphenol	106-44-5	5 .0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Ругепе	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW04W071498 Laboratory Sample Number: 98070095 Laboratory Reference #: KJC 10334

Sampled: 07/14/98 Received: 07/14/98 Analyzed: 07/15/98 Reported: 07/21/98

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	2 5	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Jenzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70- 3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW04W071498 Laboratory Sample Number: 98070095 Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
?-Nitroaniline	88-74-4	50	N.D.
კ-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

2,4,6-Trichlorophenol 88-06-2 5.0

Analytes reported as N.D. were not present above the stated limit of detection.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing **Client Project #:** 984006.00

Irvine, CA 92612

Sample Description: Water, R071498 Laboratory Sample Number: 98070096 Laboratory Reference #: KJC 10334

Sampled: 07/14/98 Received: 07/14/98 Analyzed: 07/15/98 Reported: 07/21/98

SEMILVOLATILE ORGANICS BY CC/MS (EDA 8270)

	SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)				
ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS		
	NUMBER	(ug/l)	(ug/l)		
Acanashthana	83-32-9	5.0	N.D.		
Acenaphthene	208-96-8	5.0	N.D.		
Acenaphthylene Aniline	62-53-3	5.0 5.0	N.D.		
Anthracene	120-12-7	5.0	N.D.		
Benzoic Acid	65-85-0	50	N.D.		
	56-55-3	5.0	N.D.		
Benzo (a) anthracene	205-99-2	25	N.D.		
Benzo (b) fluoranthene Benzo (k) fluoranthene	207-08-9	25 25	N.D.		
• •	191-24-2	25 25	N.D.		
Benzo (g,h,i)perylene	50-32 - 8	25 25	N.D. N.D.		
Senzo (a) pyrene		50	N.D.		
Jenzyl alcohol	100-51-6		N.D. N.D.		
Bis(2-chloroethoxy)methane	111-91-1	5.0 5.0	N.D. N.D.		
Bis(2-chloroethyl)ether	111-44-4	5.0 5.0	N.D. N.D.		
Bis(2-chloroisopropyl)ether	39638-32-9	3.0	N.D. N.D.		
Bis(2-ethylhexyl)phthalate	117-81-7	5.0 5.0	N.D. N.D.		
4-Bromophenyl phenyl ether	101-55-3	5.0 5.0	N.D. N.D.		
Butyl benzyl phthalate	85-68-7 106-47-8	5.0 5.0	N.D. N.D.		
4-Chloroaniline	106-47-8	5.0 5.0	N.D. N.D.		
2-Chloronaphthalene	91-58-7		N.D.		
4-Chloro-3-methylphenol	59-50-7	5.0	N.D. N.D.		
2-Chlorophenol	95-57-8	5.0			
4-Chlorophenyl phenyl ehter	7005-72-3	5.0 5.0	N.D.		
Chrysene	218-0109	5.0 35	N.D.		
Dibenz(a,h)anthracene	53-70-3	25 5.0	N.D. N.D.		
Dibenzofuran	132-64-9				
Di-N-butyl phthalate	84-74-2	5.0 5.0	N.D.		
1,3-Dichlorobenzene	541-73-1	5.0	N.D.		
1,4-Dichlorobenzene	106-46-7	5.0 5.0	N.D. N.D.		
1,2-Dichlorobenzene	95-50-1	5.0			
3,3-Dichlorobenzidine	91-94-1	5.0 5.0	N.D.		
2,4-Dichlorophenol	120-83-2	5.0	N.D.		
Diethyl phthalate	84-66-2	5.0	N.D.		
2,4-Dimethylphenol	105-67-9	5.0	N.D.		
Dimethyl phthalate	131-11-3	5.0	N.D.		
,6-Dinitro-2-methylphenol	534-52-1	50 50	N.D.		
2,4-Dinitrophenol	51-28-5	50 5.0	N.D.		
2,4-Dinitrotoluene	121-14-2	5.0	N.D.		
2,6-Dinitrotoluene	606-20-2	5.0	N.D.		
Di-N-octyl phthalate	117-8 4 -0	25	N.D.		

Orange Coast Analytical,Inc.

Sample Description: Water, R071498 Laboratory Sample Number: 98070096 Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
-Nitroaniline	88-74-4	50	N.D.
্য-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75 - 9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenoi	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

2,4,6-Trichlorophenol 88-06-2 5.0

Analytes reported as N.D. were not present above the stated limit of detection.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

Client Project ID: Boeing Client Project #: 984006.00

Sampled: 07/14/98

Sample Description: Water, TMW07W071498Received: 07/14/98Laboratory Sample Number: 98070098Analyzed: 07/15/98Laboratory Reference #: KJC 10334Reported: 07/21/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	2 5	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
3enzył alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5 .0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5 .0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5 .0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
1,6-Dinitro-2-methylphenol	534-52-1	5 0	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW07W071498 Laboratory Sample Number: 98070098 Laboratory Reference #: KJC 10334

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 8270) (continued)

SEMI-VOLATILE ORGANICS BY		(continued) DETECTION Limit	SAMPLE RESULTS
ANALYTE	CAS	i i	
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing **Client Project #: 984006.00**

Irvine, CA 92612

Sampled:

07/14/98

Sample Description: Water, TMW09W071498 Laboratory Sample Number: 98070099

Received:

07/14/98

Analyzed:

07/15/98

Laboratory Reference #: KJC 10334

Reported:

07/21/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Senzo (a) pyrene	50-32-8	25	N.D.
Jenzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	61
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, TMW09W071498 Laboratory Sample Number: 98070099

Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW05W071498

Sampled: 07/14/98

Laboratory Sample Number: 98070093

Recevied: 07/14/98 **Analyzed:** 07/15,17/98

Reported:

07/21/98

Laboratory Reference #: KJC 10334

CCR - METALS

Analyte	EPA Method	Detection Limit mg/I	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.025
Jeryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	0.015
Cobalt	6010	0.1	N.D.
Copper	6010	0.01	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW06W071498

Sampled: 07/14/98

Laboratory Sample Number: 98070094

Recevied: 07/14/98 **Analyzed:** 07/15,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10334

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.094
eryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	0.018
Cobalt	6010	0.1	N.D.
Copper	6010	0.01	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	60 10	0.1	N.D.
Zinc	6010	0.01	0.022

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW04W071498

Sampled: 07/14/98

Recevied: 07/14/98

Analyzed: 07/15,17/98 **Reported:** 07/21/98

Laboratory Reference #: KJC 10334

Laboratory Sample Number: 98070095

CCR - METALS

	sults ng/l
Antimony 6010 0.5	N.D.
Arsenic 6010 0.1	۱.D.
Barium 6010 0.01 0	.075
3eryllium 6010 0.01 N	۱.D.
Cadmium 6010 0.01	۱.D.
Chromium Total 7196 0.01 0	.011
Cobalt 6010 0.1	۱.D.
Copper 6010 0.01	۱.D.
Lead 6010 0.1	۱.D.
Mercury 7471 0.002	۱.D.
Molybdenum 6010 0.1	۱.D.
Nickel 6010 0.1	۱.D.
Selenium 6010 0.1	٧.D.
Silver 6010 0.1	1.D.
Thallium 6010 0.5	1.D.
Vanadium 6010 0.1	1.D.
Zinc 6010 0.01 0	.013

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, R071498

Laboratory Sample Number: 98070096

Sampled: 07/14/98

Recevied: 07/14/98 **Analyzed:** 07/15,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10334

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	N.D.
3eryllium -	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	N.D.
Cobalt	6010	0.1	N.D.
Copper	6010	0.01	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW07W071498

07/14/98 Sampled:

Recevied: 07/14/98

Laboratory Sample Number: 98070098

Analyzed: 07/15,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10334

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.066
eryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	N.D.
Cobalt	6010	0.1	N.D.
Copper	6010	0.0	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	0.017

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled:

Recevied: 07/14/98

07/14/98

Laboratory Sample Number: 98070099 Analyzed: 07/15,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10334

Sample Description: Water, TMW09W071498

CCR - METALS

Analyte	EPA Method	Detection Limit	Analysis Results "
		mg/l	mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.060
3eryllium 3	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium (VI)	6010	0.01	N.D.
Chromium Total	7196	0.01	0.015
Cobalt	6010	0.1	N.D.
Copper	6010	0.01	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	N.D.

Sample Description: Water,

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled: 07/14/98

Received: 07/14/98

Analyzed: 07/20/98

Laboratory Reference #: KJC 10334 Reported: 07/21/98

VOLATILE FUEL HYDROCARBONS (EPA 8015m)

Laboratory Sample Number	Client Sample Number	Volatile Fuel Hydrocarbons (ppm)
98070093	TMW05W071498	1.3
98070094	TMW06W071498	0.22
8070095	TMW04W071498	0.90
98070096	R071498	N.D.
98070098	TMW07W071498	1.2
98070099	TMW09W071498	0.14

Detection Limit:		0.05
	<u>-</u>	

Sample Description: Water

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled: 07/14/98

Recevied: 07/14/98

Analyzed: 07/17/98

Laboratory Reference #: KJC 10338

Reported: 07/21/98

DIESEL ANALYSIS (EPA 8015M)

Laboratory Sample Number	Client Sample Number	Extractable Hydrocarbons (ppm)
98070093	TMW05W071498	N.D.
98070094	TMW06W071498	N.D.
98070095	TMW04W071498	N.D.
98070096	R071498	N.D.
98070098	TMW07W071498	N.D.
98070099	TMW09W071498	N.D.

Detection Limit:	0.5

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

Sample Description: Water, TMW05W071498 Laboratory Sample Number: 98070093 Laboratory Reference #: KJC 10334 Client Project ID: Boeing Client Project #: 984006.00

 Sampled:
 07/14/98

 Received:
 07/14/98

 Analyzed:
 07/16/98

 Reported:
 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
`,4'-DDT	50-29-3	0.1	N.D.
ieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW06W071498 Laboratory Sample Number: 98070094 Laboratory Reference #: KJC 10334 Sampled:07/14/98Received:07/14/98Analyzed:07/16/98Reported:07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

*****	DETECTION LIMIT	SAMPLE RESULTS
NUMBER	μg/l	μg/l
309-00-2	0.1	N.D.
319-84-6	0.2	N.D.
319-85-7	0.2	N.D.
319-86-8	0.2	N.D.
58-89-9	0.2	N.D.
57-74-9	0.2	N.D.
72-54-8		N.D.
72-55-9	0.1	N.D.
50-29-3	0.1	N.D.
60-57-1		N.D.
959-98-8		N.D.
33212-65-9	0.3	N.D.
		N.D.
	319-84-6 319-85-7 319-86-8 58-89-9	319-84-6 0.2 319-85-7 0.2 319-86-8 0.2 58-89-9 0.2 57-74-9 0.2 72-54-8 0.5 72-55-9 0.1 50-29-3 0.1 60-57-1 0.5 959-98-8 0.5 33212-65-9 0.3 1031-07-8 0.5 72-20-8 0.02 7421-93-4 0.2 76-44-8 0.1 1024-57-3 0.2 72-43-5 9.0

ATTN: Mr. Rus Purcell
2151 Michelson #100

Client Project ID: Boeing
Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW04W071498
 Sampled: 07/14/98
 07/14/98

 Laboratory Sample Number: 98070095
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10334
 Reported: 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Jieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, R071498

 Sampled:
 07/14/98

 Received:
 07/14/98

 Analyzed:
 07/16/98

Laboratory Sample Number: 98070096 Laboratory Reference #: KJC 10334 **Analyzed:** 07/16/98 **Reported:** 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Alabaim	200.00.2	0.1	N.D.
Aldrin	309-00-2		
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58- 89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N .D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N .D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Тохарнепе	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

Sample Description: Water, TMW07W071498
Laboratory Sample Number: 98070098
Laboratory Reference #: KJC 10334

Client Project ID: Boeing Client Project #: 984006.00

> Sampled: Received: Analyzed:

07/14/98 07/14/98 07/16/98

Reported: 07/10/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58 -89 -9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
ieldrin	60-57-1	0.5	N.D.
Endosulfan i	9 59 -9 8-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sampled: 07/14/98 Sample Description: Water, TMW09W071498 Received: 07/14/98 Analyzed: 07/16/98 Reported: 07/21/98

Laboratory Sample Number: 98070099

Laboratory Reference #: KJC 10334

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/i	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.1	N.D. N.D.
•	319-85-7	0.2	N.D.
beta-BHC	319-86-8	0.2	N.D. N.D.
gamma-BHC (Lindono)	58-89-9	0.2	N.D. N.D.
gamma-BHC (Lindane) Chlordane	57-74-9	0.2	N.D. N.D.
. =			
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
)ieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

Analysis: Volatile Organics by GC/MS (EPA 8260)

Date of Analysis: 07/15/98

Laboratory Sample No: 98070097 Laboratory Reference No: KJC 10334

Analyte	R1 (ppb)	SP (ppb)	MS (ppb)	MSD (ppb)	PR1 %	PR2 %	RPD %
Benzene	0.0	20	18	17	90	85	6
1,1-Dichloroethene	0.0	20	16	15	80	75	6
Trichloroethene	0.0	20	18	17	90	85	6
Toluene	0.0	20	18	17	90	85	6
Chlorobenzene	0.0	20	18	17	90	85	6

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Semi-Volatile Organics by GC/MS (EPA 8270)

Date of Analysis: 07/15/98

Laboratory Sample No: OCA 100 Laboratory Reference No: KJC 10334

Analyte	R1 (ng)	SP (ng)	MS (ng)	MSD (ng)	PR1 %	PR2 %	RPD %
1,4-Dichlorobenzene	0.0	50	46	47	92	94	2
n-Nitroso-di-n-propylamine	0.0	50	50	49	100	98	2
1,2,4-Trichlorobenzene	0.0	50	48	48	96	96	0
Acenaphthene	0.0	50	42	40	84	80	5
Pyrene	0.0	50	45	44	90	88	2
Pentachlorophenol	0.0	100	83	79	83	79	5
4-Chloro-3-Methylphenol	0.0	100	72	70	72	70	3
2-Chlorophenol	0.0	100	85	84	85	84	1
Phenol	0.0	100	56	51	56	51	9

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Metals

Date of Analysis: 07/15,17/98

Laboratory Sample No: 98070093, OCA 100

Laboratory Reference No: KJC 10334

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
-	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Antimony	0.00	1.00	1.11	1.15	111	115	4
Arsenic	0.00	1.00	1.14	1.14	114	114	0
Barium	0.025	0.10	0.13	0.13	105	105	0
Beryllium	0.00	0.10	0.11	0.11	110	110	0
Cadmium	0.00	0.10	0.10	0.11	100	110	10
Chromium (Total)	0.015	0.10	0.12	0.12	105	105	18
Cobalt	0.00	0.10	0.11	0.11	110	110	0
Copper	0.00	0.10	0.11	0.11	110	110	0
Lead	0.00	1.00	1.03	1.05	103	105	2
Mercury	0.00	0.02	0.019	0.020	95	100	5
Molybdenum	0.00	1.00	1.04	1.06	104	106	2
Nickel	0.00	0.50	0.52	0.53	104	106	2
Selenium	0.00	1.00	1.11	1.12	111	112	1
Silver	0.00	0.50	0.46	0.46	92	92	0
Thallium	0.00	1.00	1.01	1.02	101	102	1
Vanadium	0.00	0.50	0.52	0.53	104	106	2
Zinc	0.00	0.10	0.12	0.12	120	120	0

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Organochlorine Pesticides (EPA 8080)

Date of Analysis: 07/16/98 Laboratory Sample No: OCA 100 Laboratory Reference No: KJC 10335

Analyte	R1 (ppb)	SP (ppb)	MS (ppb)	MSD (ppb)	PR1 %	PR2 %	RPD %
4,4'-DDT	0.0	1.0	0.85	0.84	85	84	1

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Extractable Fuel Hydrocarbons (EPA 8015m)

Date of Analysis: 07/17/98

Laboratory Sample No : OCA 100 Laboratory Reference No : KJC 10334

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	5.0	3.7	4.3	74	86	15

Definition of Terms:

Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: EPA 5030 / 8015m

Date of Analysis: 07/20/98

Laboratory Sample No: OCA100 Laboratory Reference No: KJC 10334

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	0.25	0.26	0.28	104	112	7

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis Request and Charton vof Custody Record ORANGE COAST ANALYTICAL, INC.

(714) 832-0064, Fax (714) 832-0067 3002 Dow, Suite 532 Tustin, CA 92780

4620 E. Elwood, Suite 4 Phoeníx, AZ 85040

(602) 736-0960 Fax (602) 736-0970

REQUIRED TAT:

3

ō

Lab Job No: Page_

CUSTOMER INFORMATION			PROJECT INFORMATION	FORMATIC	×		OOK	100			/		-	
UDOR JO	PROJ	AME:	Bosh	3			SM	ر ل		\	3		10/20	
SENDREPORT TO: MA Ru- Precel	NUMBER:	Ť	00.90078	g			's/s/ 	Sink	>	\	<u>ح</u> ر	$\overline{\ \ }$	/	
	LOCATION:	ION:					AM AE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,	`		~ `.		
SUITE	AODRESS:	:SS:					v	3	3	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \		
MNG, CA							<u></u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	0		\		
PHONE749/2/261-1579 FAX: 261-2134	SAMP	SAMPLED BY: MB	3+ W	1			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ra	›› بې	\			
SAMPLEID	NO. OF CONTAINERS	SAMPLE DATE	SAMPLE	SAMPLE	CONTAINER	PRES.	>			10/0/0/1/	у	\ }x	REMARKS/PRECAUTIONS	
TMW.0540498	3	36/41/4	9101	C) ATE	Jat 2 54	124	X	 				メ	XTEST FUR HOX	
98 41 COM SO. CMIT	3	2	8101	4	11.96	}		×	×	\		U	2 10	J
TWO 050011498		7	1201	4	TA M	11703				X	×	G	P	
TMJ 060 691498	3	5	1150	2	101 AW 100	A HCL	×							
TW 206 20 1498	8	٤	1153	Z.	になら)		×	×	X				
TMW06W07 1498	-		1155	۲	005 14 005	504				×	X			
TMW 04007 1498	W	7	1326	*	40r/16A HCL	TH +	¥							
384100 TO TO TOTAL	3	Æ	1328	4	Sept 2	j		У	×	¥				
BE HILOG TOPAL	1	1	1330	۲	Sayp	41,003				*	X			
Ron14 98	6	2	1441	·	404 164 HCL	724 1	X							
Roply aB	3	7	1443	7	9-11-7	1		4	×	×				
ROULT 98	1	ک	5 hh	4	- 4 COS	くってい				X	X			
(TRIP BLANK	_)	•	2	40116A HCL	HC (X							
Total No. of Samples:		Method of	od of Shipment:	ent:										
Relinquished By: Date/Time:		Received	ived By:		Ω	Date/Time:				Repor	ing For	Reporting Format: (check)	heck)	
1111 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2//75	<i>G</i> .								NON	NORMAL		S.D. HMMD	
Relinquished By: Dâte/Time:		Received	ived By:		Ω	Date/Time:				RWQCB	В С		— ОТНЕВ	
Relinquished By: Date/Time:		Rece	Received For Lab By:	b By:	۵	Date/Time:			-	Sampl	Sample Integrity:		(check)	
		Mel	Mehram Horshem	shem.	07-1	86-H1-60	17:	7:50		intact			on ice	
And the first of t	7:	1 1 1 1		-	-	:				:	:	:		

Analysis Request and Cl of Custody Record

ORANGE COAST ANALYTICAL, INC. 3002 Dow, Suite 532 Tustin, CA 92780 (714) 832-0064, Fax (714) 832-0067

4620 E. Elwood, Suite 4 / Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

REQUIRED TAT:

₹

Lab Job No: _ Page__

CUSTOMER INFORMATION	1.		PROJECT INFORMATION	-ORMATIO	Z			OOA		/) /		1 /2/		
COMPANY: KENINGOY IZNK	PROJECT NAME:	AME: BO	06126	J			_	15	\		36		*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
SEND REPORT TO: MK R. Q. R. C. L.	NUMBER:	0,000	400 6.00	8			SISAT	STORE			\$ \$\foto\ \$\fo	23 20	10/01/1		
2151 Mes	ADDRESS			-			V _{VV}	\\ \ \ \ '	<u></u>	`	7	ς.	10		
H	ADDRESS.							? 	\searrow	W S	<i>\</i>	<u>~</u> ~	\ 8.		
TRVING CA 926/2	SAMPLED BY:	1	18,1110				30	> > >	` <i>}</i> ?	Žį,	\Y.		_		
14.197 11.11.19C/LAL	NO. 0F	PLE	SAMPLE	SAMPLE	CONTAINER	\vdash		Ż	$\overset{\smile}{\overset{\smile}{\overset{\smile}{\overset{\smile}{\overset{\smile}{\overset{\smile}{\overset{\smile}{\overset{\smile}$		$\langle \rangle$		DEMA	DEMARKS/DRECAUTIONS	
SAMPLE ID	- 1	DATE	TIME	MATRIX	TYPE	LAES.	>	\downarrow						nno/r neono iio	2
TMW.07.WOTH98	3 7	86/H/L	1536 WATER	WATER	\$ 7 7 A	HCL HCL	ス ス					7	* TG31	File	1454
TMJ OF. DOP 1498	3	2	1538	5	1 LITTOR	1		×	À	X			- ACOMIUM	1	
1 TAND-ON-WOTHAR	1	٠.	1541	4	150 V	14003				X	X		TOTAL	LHEOM.	, (c/m
9841000 80 CMT	M	۲.	6161	ž	tray	1) N	У У				•		70). Me/L	
TMU 09 WOUNTSE	8		1761	. =	1 LTRE	1		X	X	Y)		
304100 BO CMT			1723	ب	200m	#U.S					メメ				:
								-							
			2.												•
4															
	10 %											•			
Total No. of Samples:		Metho	Method of Shipment:	ent:											
Relinquished By: Date/Time:	٧	Receiv	Received By:			Date/Time:				Repo	rting F	ormat:	Reporting Format: (check)		•
Mildelle 7-14-98 3	1750									2	NORMAL		S	S.D. HMMD _	 نو ا
Relinquished By: Date/Time:		Receiv	Received By:	1		Date/Time:				Æ	RWQCB			OTHER _	,
Relinquished By: Date/Time:		Recei	Received For Lab By	By:		Date/Time:				Samj	Sample Integrity:	grity:	(check)		
		Moder	΄ ξ	they have		70 11 60	_	7.50	,2	intact	 5		on ice		
		<u> </u>	3	2 .		1-12-1			2	1					

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

LABORATORY REPORT FORM

Laboratory Name: ORANGE COAST ANALYTICAL, INC.

Address:

3002 Dow Suite 532 Tustin, CA 92780

Telephone:

(714) 832-0064

Laboratory Certification

(ELAP) No.:

1416

Expiration Date:

1999

Laboratory Director's Name (Print):

Mark Noorani

Client:

Kennedy Jenks Consultants

Project No.:

Boeing

Project Name:

984006.00

Laboratory Reference: KJC 10338

Analytical Method: 8260, Metals, 8015g, 8015m diesel, 8080 Pesticides, 8270

Mark Morani

Date Sampled:

07/15/98

Date Received:

07/15/98

Date Reported:

07/21/98

Sample Matrix:

Water

Chain of Custody Received:

Yes

Laboratory Director's Signature:

RECEIVED

AUG 31 1998

Kennedy Jenks Consultants

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

ACHINEUTINEIRA CUMSULI ANIS

IRVINE, CA

Sampled:

Received: 07/15/98
Analyzed: 07/16/98
Reported: 07/21/98

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070129 Laboratory Reference #: KJC 10338

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	0.5	N.D.
Bromodichloromethane	75-27-4	0.5	N.D.
Bromoform	75-25-2	0.5	N.D.
Bromomethane	74-83-9	1.0	N.D.
Carbon Disulfide	75-15-0	0.5	N.D.
Carbon tetrachloride	56-23-5	0.5	N.D.
Chlorobenzene	108-90-7	0.5	N.D.
Chlorodibromomethane	124-48-1	0.5	N.D.
Chloroethane	75-00-3	0.5	N.D.
2-Chloroethyl vinyl ether	110-75-8	0.5	N.D.
Chloroform	67-66-3	0.5	N.D.
Chloromethane	74-87-3	0.5	N.D.
1,1-Dichloroethane	75-34-3	0.5	N.D.
1,2-Dichloroethane	107-06-2	0.5	N.D.
1,1-Dichloroethene	75-35-4	0.5	N.D.
Trans 1,2-Dichloroethene	156-60-5	0.5	N.D.
1,2-Dichloropropane	78-87-5	0.5	N.D.
cis-1,3-Dichloropropene	10061-01-5	0.5	N.D.
trans-1,3-Dichloropropene	10061-02-6	0.5	N.D.
Ethylbenzene	100-41-4	0.5	N.D.
Methylene chloride	75-09-2	2.5	N.D.
Styrene	100-42-5	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
Tetrachloroethene	127-18-4	0.5	N.D.
Toluene	108-88-3	0.5	N.D.
1,1,1-Trichloroethane	71-55-6	0.5	N.D.
1,1,2-Trichloroethane	79-00-5	0.5	N.D.
Trichloroethene	79-01-6	0.5	N.D.
Trichlorofluoromethane	75-69-4	0.5	N.D.
Vinyl acetate	108-05-4	1.0	N.D.
Vinyl chloride	75-01-4	0.5	N.D.
Total Xylenes	1330-20-7	1.0	N.D.
Dichlorodifluoromethane	75-71-8	0.5	N.D.
cis-1-2,-Dichloroethene	156-59-2	0.5	N.D.
2,2-Dichloropropane	594-20-7	0.5	N.D.
Bromochloromethane	74-97-5	0.5	N.D.
1,1-Dichloropropene	563-58-6	0.5	N.D.
Dibromomethane	74-95-3	0.5	N.D.
1,2-Dibromoethane	106-93-4	0.5	N.D.

Orange Coast Analytical, Inc.

Sample Description: Water, Trip Blank Laboratory Sample Number: 98070129 Laboratory Reference #: KJC 10338

VOLATILE	ORGANICS B'	V GC/MS	(EDV 8360)	(continued)
VOLATILE	ORGANICS B	Y GC/IVIS	(EPA 8200)	(continued)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	0.5	N.D.
Isopropylbenzene	98-82-8	0.5	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.5	N.D.
1,2,3-Trichloropropane	96-18-4	0.5	N.D.
Bromobenzene	108-86-1	0.5	N.D.
n-Propylbenzene	103-65-1	0.5	N.D.
2-Chlorotoluene	95-49-8	0.5	N.D.
1,3,5-Trimethylbenzene	108-67-8	0.5	N.D.
4-Chiorotoluene	106-43-4	0.5	N.D.
tert-Butylbenzene	98-06 - 6	0.5	N.D.
1,2,4-Trimethylbenzene	95-63-6	0.5	N.D.
sec-Butylbenzene	135-98-8	0.5	N.D.
4-Isopropyltoluene	99-87-6	0.5	N.D.
1,3-Dichlorobenzene	541-73-1	0.5	N.D.
1,4-Dichlorobenzene	106-46-7	0.5	N.D.
n-Butylbenzene	104-51-8	0.5	N.D.
1,2-Dichlorobenzene	95-50-1	0.5	N.D.
1-2-Dibromo-3-CPA	96-12-8	1.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	0.5	N.D.
Hexachlorobutadiene	87-68-3	0.5	N.D.
Naphthalene	91-20-3	0.5	N.D.
1,2,3-Trichlorobenzene	87-61-6	0.5	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane	107
Toluene-d8	94
4-Bromofluorobenzene	101

ATTN: Mr. Rus Purcell
2151 Michelson #100

Irvine, CA 92612

Client Project ID: Boeing
Client Project #: 984006.00

 Sample Description: Water, TMW-11-W071598
 Received: 07/15/98

 Laboratory Sample Number: 98070130
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	25	61
Bromodichloromethane	75-27-4	25	N.D.
Bromoform	75-25-2	25	N.D.
Bromomethane	74-83-9	50	N.D.
Carbon Disulfide	75-15-0	25	N.D.
Carbon tetrachloride	56-23-5	25	N.D.
Chlorobenzene	108-90-7	25	N.D.
Chlorodibromomethane	124-48-1	25	N.D.
Chloroethane	75-00-3	25	N.D.
2-Chloroethyl vinyl ether	110-75-8	25	N.D.
Chloroform	67-66-3	25	40
Chloromethane	74-87-3	25	N.D.
1,1-Dichloroethane	75-34-3	25	99
1,2-Dichloroethane	107-06-2	25	44
1,1-Dichloroethene	75-35-4	25	7,000
Trans 1,2-Dichloroethene	156-60-5	25	120
1,2-Dichloropropane	78-87-5	25	N.D.
cis-1,3-Dichloropropene	10061-01-5	25	N.D.
trans-1,3-Dichloropropene	10061-02-6	25	N.D.
Ethylbenzene	100-41-4	25	N.D.
Methylene chloride	75-09-2	125	N.D.
Styrene	100-42-5	25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25	N.D.
Tetrachloroethene	127-18-4	25	N.D.
Toluene	108-88-3	25	N.D.
1,1,1-Trichloroethane	71-55-6	25	39
1,1,2-Trichloroethane	79-00-5	25	32
Trichloroethene	79-01-6	25	5,800
Trichlorofluoromethane	75-69-4	25	N.D.
Vinyl acetate	108-05-4	50	N.D.
Vinyl chloride	75-01-4	25	N.D.
Total Xylenes	1330-20-7	25	N.D.
Dichlorodifluoromethane	75-71-8	25	N.D.
cis-1-2,-Dichloroethene	156-59-2	25	140
2,2-Dichloropropane	594-20-7	25	N.D.
Bromochloromethane	74-97-5	25	N.D.
1,1-Dichloropropene	563-58-6	25	N.D.
Dibromomethane	74-95-3	25	N.D.
1,2-Dibromoethane	106-93-4	25	N.D.

Sample Description: Water, TMW-11-W071598

Laboratory Sample Number: 98070130 Laboratory Reference #: KJC 10338

VOLATILE ORGANICS BY GC/MS (EPA 8260) (continued	VOLATILE	ORGANICS	BY GC/MS	(EPA 8260)) (continued
--	----------	-----------------	----------	------------	--------------

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	25	N.D.
Isopropylbenzene	98-82-8	25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25	N.D.
1,2,3-Trichloropropane	96-18-4	25	N.D.
Bromobenzene	108-86-1	25	N.D.
n-Propylbenzene	103-65-1	25	N.D.
2-Chlorotoluene	95-49-8	25	N.D.
1,3,5-Trimethylbenzene	108-67-8	25	N.D.
4-Chlorotoluene	106-43-4	25	N.D.
tert-Butylbenzene	98-06-6	25	N.D.
1,2,4-Trimethylbenzene	95-63 - 6	25	N.D.
sec-Butylbenzene	135-98-8	25	N.D.
4-Isopropyltoluene	99-87-6	25	N.D.
1,3-Dichlorobenzene	541-73-1	25	N.D.
1,4-Dichlorobenzene	106-46-7	25	N.D.
n-Butylbenzene	104-51 - 8	25	N.D.
1,2-Dichlorobenzene	95-50-1	25	N.D.
1-2-Dibromo-3-CPA	96-12-8	50	N.D.
1,2,4-Trichlorobenzene	120 - 82-1	25	N.D.
Hexachlorobutadiene	87-68-3	25	N.D.
Naphthalene	91-20-3	25	N.D.
1,2,3-Trichlorobenzene	87-61-6	25	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane	113
Toluene-d8	96
4-Bromofluorobenzene	102

ATTN: Mr. Rus Purcell Client Project ID: Boeing Client Project #: 984006.00 2151 Michelson #100 Irvine, CA 92612

Sample Description: Water, TMW-08-W071598

Laboratory Sample Number: 98070131 **Analyzed:** 07/16/98 Laboratory Reference #: KJC 10338 **Reported:** 07/21/98

Sampled:

Received:

07/15/98

07/15/98

VOLATILE ORGANICS BY GC/I ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	25	62
Bromodichloromethane	75-27-4	25	N.D.
Bromoform	75-25-2	25	N.D.
Bromomethane	74-83-9	50	N.D.
Carbon Disulfide	75-15-0	25	N.D.
Carbon tetrachloride	56-23-5	25	N.D.
Chlorobenzene	108-90-7	25	N.D.
Chlorodibromomethane	124-48-1	25	N.D.
Chloroethane	75-00-3	25	N.D.
2-Chloroethyl vinyl ether	110-75-8	25	N.D.
Chloroform	67-66-3	25	38
Chloromethane	74-87-3	25	N.D.
1,1-Dichloroethane	75-34-3	25	96
1,2-Dichloroethane	107-06-2	25	42
1,1-Dichloroethene	75-35-4	25	7,000
Trans 1,2-Dichloroethene	156-60-5	25	120
1,2-Dichloropropane	78-87-5	25	N.D.
cis-1,3-Dichloropropene	10061-01-5	25	N.D.
trans-1,3-Dichloropropene	10061-02-6	25	N.D.
Ethylbenzene	100-41-4	25	N.D.
Methylene chloride	75-09-2	125	N.D.
Styrene	100-42-5	25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25	N.D.
Tetrachloroethene	127-18-4	25	N.D.
Toluene	108-88-3	25	N.D.
1,1,1-Trichloroethane	71-55-6	25	37
1,1,2-Trichloroethane	79-00-5	25	37
Trichloroethene	79-01-6	25 .	5,700
Trichlorofluoromethane	75-69-4	25	N.D.
Vinyl acetate	108-05-4	50	N.D.
Vinyl chloride	75-01-4	25	N.D.
Total Xylenes	1330-20-7	25	N.D.
Dichlorodifluoromethane	75-71-8	25	N.D.
cis-1-2,-Dichloroethene	156-59-2	25	140
2,2-Dichloropropane	594-20-7	25	N.D.
Bromochloromethane	74-97-5	25	N.D.
1,1-Dichloropropene	563-58-6	25	N.D.
Dibromomethane	74-95-3	25	N.D.
1,2-Dibromoethane	106-93-4	25	N.D.

Sample Description: Water, TMW-08-W071598

Laboratory Sample Number: 98070131 Laboratory Reference #: KJC 10338

VOLATILE ORGANICS BY GC/MS (EPA	8260)	(continued)
---------------------------------	-------	-------------

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	25	N.D.
Isopropylbenzene	98-82-8	25 25	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	25 25	N.D.
1,2,3-Trichloropropane	96-18-4	25 25	N.D.
Bromobenzene	108-86-1	25 25	N.D.
	103-65-1	25 25	N.D. N.D.
n-Propylbenzene 2-Chlorotoluene	95-49-8	25 25	N.D. N.D.
	108-67-8	25 25	N.D. N.D.
1,3,5-Trimethylbenzene	106-43-4	25 25	N.D. N.D.
4-Chlorotoluene			
tert-Butylbenzene	98-06-6	25	N.D.
1,2,4-Trimethylbenzene	95-63-6	25	N.D.
sec-Butylbenzene	135-98-8	25	N.D.
4-Isopropyltoluene	99-87-6	25	N.D.
1,3-Dichlorobenzene	541-73-1	25	N.D.
1,4-Dichlorobenzene	106-46-7	25	N.D.
n-Butylbenzene	104-51-8	25	N.D.
1,2-Dichlorobenzene	95-50-1	25	N.D.
1-2-Dibromo-3-CPA	96-12-8	50	N.D.
1,2,4-Trichlorobenzene	120-82-1	25	N.D.
Hexachlorobutadiene	87-68-3	25	N.D.
Naphthalene	91-20-3	25	N.D.
1,2,3-Trichlorobenzene	87-61-6	25	N.D.

	Surrogat	le Reco	veries	%
--	----------	---------	--------	---

Dibromofluoromethane	113
Toluene-d8	95
4-Bromofluorobenzene	100

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612

Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW-01-W071598 Laboratory Sample Number: 98070132 Laboratory Reference #: KJC 10338

 Sampled:
 07/15/98

 Received:
 07/15/98

 Analyzed:
 07/16/98

 Reported:
 07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	5.0	N.D.
Bromodichloromethane	75-27-4	5.0	N.D.
Bromoform	75-25-2	5.0	N.D.
Bromomethane	74-83-9	10	N.D.
Carbon Disulfide	75-15-0	5.0	N.D.
Carbon tetrachloride	56-23-5	5.0	N.D.
Chlorobenzene	108-90-7	5.0	N.D.
Chlorodibromomethane	124-48-1	5.0	N.D.
Chloroethane	75-00-3	5.0	N.D.
2-Chloroethyl vinyl ether	110-75-8	5.0	N.D.
Chloroform	67-66-3	5.0	7.1
Chloromethane	74-87-3	5.0	N.D.
1,1-Dichloroethane	75-34-3	5.0	N.D.
1,2-Dichloroethane	107-06-2	5.0	N.D.
1,1-Dichloroethene	75-35-4	5.0	900
Frans 1,2-Dichloroethene	156-60-5	5.0	N.D.
,2-Dichloropropane	78-87-5	5.0	N.D.
cis-1,3-Dichloropropene	10061-01-5	5.0	N.D.
rans-1,3-Dichloropropene	10061-02-6	5.0	N.D.
Ethylbenzene	100-41-4	5.0	N.D.
Methylene chloride	75-09-2	25	N.D.
Styrene	100-42-5	5.0	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	5.0	N.D.
Tetrachloroethene	127-18-4	5.0	N.D.
Toluene	108-88-3	5.0	N.D.
I,1,1-Trichloroethane	71-55-6	5.0	12
1,1,2-Trichloroethane	79-00-5	5.0	N.D.
Frichloroethene	79-01-6	5.0	540
Frichlorofluoromethane	75-69-4	5.0	22
/inyl acetate	108-05-4	10	N.D.
Vinyl chloride	75-01-4	5.0	N.D.
Total Xylenes	1330-20-7	5.0	N.D.
Dichlorodifluoromethane	75-71-8	5.0	N.D.
cis-1-2,-Dichloroethene	156-59-2	5.0	N.D.
2,2-Dichloropropane	594-20-7	5.0	N.D.
3romochloromethane	74-97-5	5.0	N.D.
1,1-Dichloropropene	563-58-6	5.0	N.D.
Dibromomethane	74-95-3	5.0	N.D.
1,2-Dibromoethane	106-93-4	5.0	N.D.

Sample Description: Water, TMW-01-W071598

Laboratory Sample Number: 98070132 Laboratory Reference #: KJC 10338

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	5.0	N.D.
Isopropylbenzene	98-82-8	5.0	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	5.0	N.D.
1,2,3-Trichloropropane	96-18-4	5.0	N.D.
Bromobenzene	108-86-1	5.0	N.D.
n-Propylbenzene	103-65-1	5.0	N.D.
2-Chlorotoluene	95-49-8	5.0	N.D.
1,3,5-Trimethylbenzene	108-67-8	5.0	N.D.
4-Chlorotoluene	106-43-4	5.0	N.D.
tert-Butylbenzene	98-06-6	5.0	N.D.
1,2,4-Trimethylbenzene	95-63-6	5.0	N.D.
sec-Butylbenzene	135-98-8	5.0	N.D.
4-isopropyltoluene	99-87-6	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
n-Butylbenzene	104-51-8	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
1-2-Dibromo-3-CPA	96-12 - 8	10	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
1,2,3-Trichlorobenzene	87-61-6	5.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

Surrogate Recoveries %

Dibromofluoromethane	116
Toluene-d8	94
4-Bromofluorobenzene	104

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW-02-W071598 Laboratory Sample Number: 98070133 Laboratory Reference #: KJC 10338 Sampled:07/15/98Received:07/15/98Analyzed:07/16/98Reported:07/21/98

VOLATILE ORGANICS BY GC/MS (EPA 8260)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Benzene	71-43-2	250	N.D.
Bromodichloromethane	75-27-4	250	N.D.
Bromoform	75-25-2	250	N.D.
Bromomethane	74-83-9	500	N.D.
Carbon Disulfide	75-15-0	250	N.D.
Carbon tetrachloride	56-23-5	250	N.D.
Chlorobenzene	108-90-7	250	N.D.
Chlorodibromomethane	124-48-1	250	N.D.
Chloroethane	75-00-3	250	N.D.
2-Chloroethyl vinyl ether	110-75-8	250	N.D.
Chloroform	67-66-3	250	350
Chloromethane	74-87-3	250	N.D.
1,1-Dichloroethane	75-34-3	250	N.D.
1,2-Dichloroethane	107-06-2	250	N.D.
1,1-Dichloroethene	75-35-4	250	36,000
Trans 1,2-Dichloroethene	156-60-5	250	630
1,2-Dichloropropane	78-87-5	250	N.D.
cis-1,3-Dichloropropene	10061-01-5	250	N.D.
trans-1,3-Dichloropropene	10061-02-6	250	N.D.
Ethylbenzene	100-41-4	250	N.D.
Methylene chloride	75-09-2	1250	N.D.
Styrene	100-42-5	250	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	250	N.D.
Tetrachloroethene	127-18-4	250	N.D.
Toluene	108-88-3	250	N.D.
1,1,1-Trichloroethane	71-55-6	250	6,900
1,1,2-Trichloroethane	79-00-5	250	Ń.D.
Trichloroethene	79-01-6	250	34,000
Trichlorofluoromethane	75-69-4	250	N.D.
Vinyl acetate	108-05-4	500	N.D.
Vinyl chloride	75-01-4	250	N.D.
Total Xylenes	1330-20-7	250	N.D.
Dichlorodifluoromethane	75-71-8	250	N.D.
cis-1-2,-Dichloroethene	156-59-2	250	710
2,2-Dichloropropane	594-20-7	250	N.D.
Bromochloromethane	74-97-5	250	N.D.
1,1-Dichloropropene	563-58 - 6	250	N.D.
Dibromomethane	74-95-3	250	N.D.
1,2-Dibromoethane	106-93-4	250	N.D.

Sample Description: Water, TMW-02-W071598

Laboratory Sample Number: 98070133 Laboratory Reference #: KJC 10338

VOLATILE ORGANICS BY C	GC/MS (EPA	8260)	(continued)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
1,3-Dichloropropane	142-28-9	250	N.D.
Isopropylbenzene	98-82-8	250	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	250	N.D.
1,2,3-Trichloropropane	96-18-4	250	N.D.
Bromobenzene	108-86-1	250	N.D.
n-Propylbenzene	103-65-1	250	N.D.
2-Chlorotoluene	95-49-8	250	N.D.
1,3,5-Trimethylbenzene	108-67-8	250	N.D.
4-Chlorotoluene	106-43-4	250	N.D.
tert-Butylbenzene	98-06-6	250	N.D.
1,2,4-Trimethylbenzene	95-63-6	250	N.D.
sec-Butylbenzene	135-98-8	250	N.D.
4-Isopropyltoluene	99-87 - 6	250	N.D.
1,3-Dichlorobenzene	541-73-1	250	N.D.
1,4-Dichlorobenzene	106-46-7	250	N.D.
n-Butylbenzene	104-51-8	250	N.D.
1,2-Dichlorobenzene	95-50-1	250	N.D.
1-2-Dibromo-3-CPA	96-12-8	500	N.D.
1,2,4-Trichlorobenzene	120-82-1	250	N.D.
Hexachlorobutadiene	87-68-3	250	N.D.
Naphthalene	91-20-3	250	N.D.
1,2,3-Trichlorobenzene	87-61-6	250	N.D.

_		
Surrogate	Recoveries	%

Dibromofluoromethane	113
Toluene-d8	95
4-Bromofluorobenzene	101

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

Sample Description: Water, TMW-11-W071598 Laboratory Sample Number: 98070130

Laboratory Reference #: KJC 10338

Client Project ID: Boeing Client Project #: 984006.00

> Sampled: Received:

07/15/98 07/15/98

Analyzed: 07/16/98

Reported: 07/27/98

SEMINOLATILE ODCANICS BY COME (EDA 9270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Benzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
4,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Sample Description: Water, TMW-11-W071598

Laboratory Sample Number: 98070130 Laboratory Reference #: KJC 10338

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87 - 86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100

Irvine, CA 92612

 Sample Description: Water, TMW-08-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070131
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/27/98

Client Project ID: Boeing

Client Project #: 984006.00

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Benzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	5.8
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57 - 8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50 - 1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
4,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Sample Description: Water, TMW-08-W071598

Laboratory Sample Number: 98070131 Laboratory Reference #: KJC 10338

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57 - 6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

2,4,6-Trichlorophenol 88-06-2 5.0

Analytes reported as N.D. were not present above the stated limit of detection.

ATTN: Mr. Rus Purcell

2151 Michelson #100

Client Project ID: Boeing

Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW-01-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070132
 Received: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/27/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/I)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Benzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84- 66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
4,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Sample Description: Water, TMW-01-W071598

Laboratory Sample Number: 98070132 Laboratory Reference #: KJC 10338

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30-6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell
2151 Michelson #100

Irvine, CA 92612

Client Project ID: Boeing
Client Project #: 984006.00

 Sample Description: Water, TMW-02-W071598
 Sample Description: Water, TMW-02-W071598
 Received: 07/15/98

 Laboratory Sample Number: 98070133
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/27/98

SEMI VOLATILE ORGANICS BY GC/MS (EPA 8270)

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Acenaphthene	83-32-9	5.0	N.D.
Acenaphthylene	208-96-8	5.0	N.D.
Aniline	62-53-3	5.0	N.D.
Anthracene	120-12-7	5.0	N.D.
Benzoic Acid	65-85-0	50	N.D.
Benzo (a) anthracene	56-55-3	5.0	N.D.
Benzo (b) fluoranthene	205-99-2	25	N.D.
Benzo (k) fluoranthene	207-08-9	25	N.D.
Benzo (g,h,i)perylene	191-24-2	25	N.D.
Benzo (a) pyrene	50-32-8	25	N.D.
Benzyl alcohol	100-51-6	50	N.D.
Bis(2-chloroethoxy)methane	111-91-1	5.0	N.D.
Bis(2-chloroethyl)ether	111-44-4	5.0	N.D.
Bis(2-chloroisopropyl)ether	39638-32-9	5.0	N.D.
Bis(2-ethylhexyl)phthalate	117-81-7	3.0	N.D.
4-Bromophenyl phenyl ether	101-55-3	5.0	N.D.
Butyl benzyl phthalate	85-68-7	5.0	N.D.
4-Chloroaniline	106-47-8	5.0	N.D.
2-Chloronaphthalene	91-58-7	5.0	N.D.
4-Chloro-3-methylphenol	59-50-7	5.0	N.D.
2-Chlorophenol	95-57-8	5.0	N.D.
4-Chlorophenyl phenyl ehter	7005-72-3	5.0	N.D.
Chrysene	218-0109	5.0	N.D.
Dibenz(a,h)anthracene	53-70-3	25	N.D.
Dibenzofuran	132-64-9	5.0	N.D.
Di-N-butyl phthalate	84-74-2	5.0	N.D.
1,3-Dichlorobenzene	541-73-1	5.0	N.D.
1,4-Dichlorobenzene	106-46-7	5.0	N.D.
1,2-Dichlorobenzene	95-50-1	5.0	N.D.
3,3-Dichlorobenzidine	91-94-1	5.0	N.D.
2,4-Dichlorophenol	120-83-2	5.0	N.D.
Diethyl phthalate	84-66-2	5.0	N.D.
2,4-Dimethylphenol	105-67-9	5.0	N.D.
Dimethyl phthalate	131-11-3	5.0	N.D.
4,6-Dinitro-2-methylphenol	534-52-1	50	N.D.
2,4-Dinitrophenol	51-28-5	50	N.D.
2,4-Dinitrotoluene	121-14-2	5.0	N.D.
2,6-Dinitrotoluene	606-20-2	5.0	N.D.
Di-N-octyl phthalate	117-84-0	25	N.D.

Sample Description: Water, TMW-02-W071598

Laboratory Sample Number: 98070133 Laboratory Reference #: KJC 10338

ANALYTE	CAS	DETECTION Limit	SAMPLE RESULTS
	NUMBER	(ug/l)	(ug/l)
Fluoranthene	206-44-0	5.0	N.D.
Fluorene	86-73-7	5.0	N.D.
Hexachlorobenzene	118-74-1	5.0	N.D.
Hexachlorobutadiene	87-68-3	5.0	N.D.
Hexachlorocyclopentadiene	77-47-4	5.0	N.D.
Hexachloroethane	67-72-1	5.0	N.D.
Indeno(1,2,3-cd)pyrene	193-39-5	25	N.D.
Isophorone	78-59-1	5.0	N.D.
2-Methylnaphthalene	91-57-6	5.0	N.D.
2-Methylphenol	95-48-7	5.0	N.D.
4-Methylphenol	106-44-5	5.0	N.D.
Naphthalene	91-20-3	5.0	N.D.
2-Nitroaniline	88-74-4	50	N.D.
3-Nitroaniline	99-09-2	50	N.D.
4-Nitroaniline	100-01-6	50	N.D.
Nitrobenzene	98-95-3	5.0	N.D.
2-Nitrophenol	88-75-5	5.0	N.D.
4-Nitrophenol	100-02-7	50	N.D.
N-Nitrosodiphenylamine	86-30 - 6	5.0	N.D.
N-Nitroso-di-N-propylamine	621-64-7	5.0	N.D.
N-Nitrosodimethylamine	62-75-9	5.0	N.D.
Pentachlorophenol	87-86-5	50	N.D.
Phenanthrene	85-01-8	5.0	N.D.
Phenol	108-95-2	5.0	N.D.
Pyrene	129-00-0	5.0	N.D.
1,2,4-Trichlorobenzene	120-82-1	5.0	N.D.
2,4,5-Trichlorophenol	95-95-4	5.0	N.D.
2,4,6-Trichlorophenol	88-06-2	5.0	N.D.

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sample Description: Water, TMW-11-W071598

Sampled: 07/15/98

Laboratory Sample Number: 98070130

Recevied: 07/15/98 **Analyzed:** 07/16,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10338

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.066
Beryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	N.D.
Cobalt	6010	0.1	N.D.
Copper	6010	0.0	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	0.019

ATTN: Mr. Rus Purcell Client Project ID: Boeing 2151 Michelson #100 Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW-08-W071598 Sampled: 07/15/98

Recevied: 07/15/98

Laboratory Sample Number: 98070131 Analyzed: 07/16,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10338

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.020
Beryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	N.D.
Cobalt	6010	0.1	N.D.
Copper	6010	0.0	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	0.013

ATTN: Mr. Rus Purcell 2151 Michelson #100

Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW-01-W071598

Sampled: 07/15/98

Recevied: 07/15/98 **Analyzed:** 07/16,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10338

Laboratory Sample Number: 98070132

CCR - METALS

Analyte	EPA	Detection	Analysis
	Method	Limit //	Results
		mg/l	mg/i
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010	0.01	0.20
Beryllium	6010	0.01	N.D.
Cadmium	6010	0.01	N.D.
Chromium Total	7196	0.01	N.D.
Cobalt	6010	0.1	N.D.
Copper	6010	0.0	N.D.
Lead	6010	0.1	N.D.
Mercury	7471	0.002	N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium	6010	0.1	N.D.
Zinc	6010	0.01	0.022

ATTN: Mr. Rus Purcell 2151 Michelson #100 Client Project ID: Boeing Client Project #: 984006.00

Irvine, CA 92612

Sample Description: Water, TMW-02-W071598

Sampled: 07/15/98

Recevied: 07/15/98 **Analyzed:** 07/16,17/98

Reported: 07/21/98

Laboratory Reference #: KJC 10338

Laboratory Sample Number: 98070133

CCR - METALS

Analyte	EPA Method	Detection Limit mg/l	Analysis Results mg/l
Antimony	6010	0.5	N.D.
Arsenic	6010	0.1	N.D.
Barium	6010 6010	0.01 0.01	0.23 N.D.
Beryllium		0.01	
Cadmium	6010 6010	0.01	N.D. 0.13
Chromium (VI) Chromium Total	7196	0.01	
		0.01	0.13
Cobalt	6010 6010		N.D.
Copper	6010	0.0	N.D.
Lead	6010 7471	0.1 0.002	N.D.
Mercury	7471		N.D.
Molybdenum	6010	0.1	N.D.
Nickel	6010	0.1	N.D.
Selenium	6010	0.1	N.D.
Silver	6010	0.1	N.D.
Thallium	6010	0.5	N.D.
Vanadium 	6010	0.1	N.D.
Zinc	6010	0.01	0.029

Sample Description: Water,

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled: 07/15/98

Received: 07/15/98

Analyzed: 07/20/98

Laboratory Reference #: KJC 10338 Reported: 07/21/98

VOLATILE FUEL HYDROCARBONS (EPA 8015m)

Laboratory Sample Number	Client Sample Number	Volatile Fuel Hydrocarbons (ppm)
98070130	TMW-11-W071598	1.8
98070131	TMW-08-W071598	1.8
98070132	TMW-01-W071598	0.20
98070133	TMW-02-W071598	13

Detection Limit:		0.05

ATTN: Mr. Rus Purcell 2151 Michelson #100 Irvine, CA 92612 Client Project ID: Boeing Client Project #: 984006.00

Sampled: 07/15/98

Sample Description: Water Recevied: 07/15/98

Analyzed: 07/17/98

Laboratory Reference #: KJC 10338 Reported: 07/21/98

DIESEL ANALYSIS (EPA 8015M)

Laboratory Sample Number	Client Sample Number	Extractable Hydrocarbons (ppm)	
98070130	TMW-11-W071598	N.D.	
98070131	TMW-08-W071598	N.D.	
98070132	TMW-01-W071598	N.D.	
98070133	TMW-02-W071598	N.D.	

Detection Limit:		0.5

ATTN: Mr. Rus Purcell
2151 Michelson #100

Client Project ID: Boeing
Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW-11-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070130
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell
2151 Michelson #100

Client Project ID: Boeing
Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW-08-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070131
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98- 8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

ATTN: Mr. Rus Purcell
2151 Michelson #100

Client Project ID: Boeing
Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW-01-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070132
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58-89-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.
		0.0	11.00

ATTN: Mr. Rus Purcell Client Project ID: Boeing 2151 Michelson #100 Client Project #: 984006.00

Irvine, CA 92612

 Sample Description: Water, TMW-02-W071598
 Sampled: 07/15/98

 Laboratory Sample Number: 98070133
 Analyzed: 07/16/98

 Laboratory Reference #: KJC 10338
 Reported: 07/21/98

ORGANOCHLORINATED PESTICIDES (EPA 8080)

ANALYTE	CAS	DETECTION LIMIT	SAMPLE RESULTS
	NUMBER	μg/l	μg/l
Aldrin	309-00-2	0.1	N.D.
alpha-BHC	319-84-6	0.2	N.D.
beta-BHC	319-85-7	0.2	N.D.
gamma-BHC	319-86-8	0.2	N.D.
gamma-BHC (Lindane)	58 -8 9-9	0.2	N.D.
Chlordane	57-74-9	0.2	N.D.
4,4'-DDD	72-54-8	0.5	N.D.
4,4'-DDE	72-55-9	0.1	N.D.
4,4'-DDT	50-29-3	0.1	N.D.
Dieldrin	60-57-1	0.5	N.D.
Endosulfan I	959-98-8	0.5	N.D.
Endosulfan II	33212-65-9	0.3	N.D.
Endosulfan sulfate	1031-07-8	0.5	N.D.
Endrin	72-20-8	0.02	N.D.
Endrin aldehyde	7421-93-4	0.2	N.D.
Heptachlor	76-44-8	0.1	N.D.
Heptachlor epoxide	1024-57-3	0.2	N.D.
Methoxychlor	72-43-5	9.0	N.D.
Toxaphene	8001-35-2	0.5	N.D.

Analysis: Volatile Organics by GC/MS (EPA 8260)

Date of Analysis: 07/16/98

Laboratory Sample No: 98070129 Laboratory Reference No: KJC 10338

Analyte	R1 (ppb)	SP (ppb)	MS (ppb)	MSD (ppb)	PR1 %	PR2 %	RPD %
Benzene	0.0	20	18	19	90	95	5
1,1-Dichloroethene	0.0	20	19	19	95	95	0
Trichloroethene	0.0	20	20	19	100	95	5
Toluene	0.0	20	17	18	85	90	6
Chlorobenzene	0.0	20	19	19	95	95	0

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Semi-Volatile Organics by GC/MS (EPA 8270)

Date of Analysis: 07/16/98

Laboratory Sample No: OCA 100 Laboratory Reference No: KJC 10338

Analyte	R1 (ng)	SP (ng)	MS (ng)	MSD (ng)	PR1 %	PR2 %	RPD %
1,4-Dichlorobenzene	0.0	50	46	46	92	92	0
n-Nitroso-di-n-propylamine	0.0	50	50	49	100	98	2
1,2,4-Trichlorobenzene	0.0	50	48	48	96	96	0
Acenaphthene	0.0	50	41	41	82	82	0
Pyrene	0.0	50	43	41	86	82	5
Pentachlorophenol	0.0	100	81	78	81	78	4
4-Chloro-3-Methylphenol	0.0	100	73	72	73	72	1
2-Chlorophenol	0.0	100	87	86	87	86	1
Phenol	0.0	100	58	. 52	58	52	11

Definition of Terms:

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Metals

Date of Analysis: 07/15,17/98

Laboratory Sample No: 98070093, OCA 100

Laboratory Reference No: KJC 10338

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Antimony	0.00	1.00	1.11	1.15	111	115	4
Arsenic	0.00	1.00	1.14	1.14	114	114	0
Barium	0.025	0.10	0.13	0.13	105	105	0
Beryllium	0.00	0.10	0.11	0.11	110	110	0
Cadmium	0.00	0.10	0.10	0.11	100	110	10
Chromiun (VI)	0.00	0.50	0.52	0.48	104	96	8
Chromium (Total)	0.015	0.10	0.12	0.12	105	105	0
Cobalt	0.00	0.10	0.11	0.11	110	110	0
Copper	0.00	0.10	0.11	0.11	110	110	0
Lead	0.00	1.00	1.03	1.05	103	105	2 5
Mercury	0.00	0.02	0.019	0.020	95	100	5
Molybdenum	0.00	1.00	1.04	1.06	104	106	2
Nickel	0.00	0.50	0.52	0.53	104	106	2
Selenium	0.00	1.00	1.11	1.12	111	112	1
Silver	0.00	0.50	0.46	0.46	92	92	0
Thallium	0.00	1.00	1.01	1.02	101	102	1
Vanadium	0.00	0.50	0.52	0.53	104	106	2
Zinc	0.00	0.10	0.12	0.12	120	120	0

Definition of Terms:

R1	Results Of First Analysis
SP	Spike Concentration Added to Sample

opike conjunitation / laded to can

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100
PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: Organochlorine Pesticides (EPA 8080)

Date of Analysis: 07/26/98

Laboratory Sample No: OCA 100 Laboratory Reference No: KJC 10338

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppb)	(ppb)	(ppb)	(ppb)	%	%	%
4,4'-DDT	0.0	1.0	0.85	0.84	85	84	1

Definition of Terms:

R1

Results Of First Analysis

SP

Spike Concentration Added to Sample

MS

Matrix Spike Results

MSD

Matrix Spike Duplicate Results

PR1

Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2

Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

RPD

Analysis: Extractable Fuel Hydrocarbons (EPA 8015m)

Date of Analysis: 07/17/98

Laboratory Sample No: OCA 100 Laboratory Reference No: KJC 10338

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	5.0	3.7	4.3	74	86	15

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis: EPA 5030 / 8015m

Date of Analysis: 07/20/98

Laboratory Sample No: OCA100 Laboratory Reference No: KJC 10338

Analyte	R1	SP	MS	MSD	PR1	PR2	RPD
	(ppm)	(ppm)	(ppm)	(ppm)	%	%	%
Hydrocarbons	0.0	0.25	0.26	0.28	104	112	7

Definition of Terms:

R1 Results Of First Analysis

SP Spike Concentration Added to Sample

MS Matrix Spike Results

MSD Matrix Spike Duplicate Results

PR1 Percent Recovery Of MS: {(MS-R1) / SP} x100

PR2 Percent Recovery Of MSD: {(MSD-R1) / SP} x 100

Analysis Request and Cl of Custody Record ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532 Tustin, CA 92780 (714) 832-0064, Fax (714) 832-0067

4620 E. Elwood, Suite 4 Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

REQUIRED TAT:

ŏ

Lab Job No: Page_

CUSTOMER INFORMATION	-		PROJECT IN	JECT INFORMATION	N		90	8		/C./	
COMPANY: KEUNDSY JOUKS	PROJEC	VAME:	Gare, 16				HEIM		\	0.00	/ / */; /0
DRITO Me POR PO	NUMBER:		v (g			SINC VSIS.		\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ADDRESS: 215 MICHES SAN	LOCATION						THE VEE	£.	<u></u>	/6/3	2
SUITE 100	ADDRESS:	S:					/	1/10	V?	\`\\`\	
* IRVING: CA 92612								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ੑੑੑੑੑ	1	\ \
4017-190 EAST 0201-2124	SAMPLED BY:		MB 1 M	لي			4/39/			\times	
SAMPLEID	NO. OF CONTAINERS	SAMPLE Date	SAMPLE TIME	SAMPLE	CONTAINER	PRES.	\ \ \		``	**************************************	REMARKS/PRECAUTIONS
TRIP BLANK	_		*****	WARE	121 ES	4 the	×	-			TREAT FOR HAN
TMU-08-WOTISSE	3 9	lisheon	030	z	401/104	- 14g	×				3
96516017-11-MM	3	, ,	0133	17	1 4P.	1		×	×		
DMJ-11- WO71598		2	0735	۲.	500ml PLAS	Hyoz		-	×	×	0.1 1/1/1
TMU 08 U071598	ч	,	UBIA	ĭ	40m/VA HCL	14cm	×				
TMW. 08 WOTISAR	J	د	1280	٠	LITE Probab	-		×	×		
TMJ. 08. WOTISSB	_	4	082	يد. -	Some	HV103			×	×	
TWW.01-W071598	M	٤	150	n	pg 1-04	77#	メ				
TMJ-01-4071598	M	>	653	2	Store Autor	ľ		×	×		
TMJ-01-10-011598		د	5501	2		¥			×	X	
TMJ. 02-20011598	~	2	1209	1)	401 104	五	×				
That 02-WON1598	М	7	1211	7	1 LITPE)		×	×		
1 TMJ-02-WO71598	-		1213	\$		thus,			×	X	
			,								
Total No. of Samples: 13VOA /12 AVBCK /	1.45001		Method of Shipment:	ent	どしん	Nores					
Relinquished By: Date/Time:	. 4	Recei	Received By:		ă	Date/Time:			Rероп	ing Form	Reporting Format: (check)
11 3al darung - 115/19-	055/								NORMAL	MAL	S.D. HMMD
'Relinquished By: Date/Time:		Receiv	Received By:		ă	Date/Time:			RWQCB	CB	ОТНЕВ
Relinquished By: Date/Time:		Recei	Received For Lab By:	By:		Date/Time:	65.5%	2	Sample	Sample Integrity:	: (check)

All complex remain the average of the alient with